{"title":"应用于奇摄动反应扩散问题稀疏网格有限元法的平衡范数误差估计","authors":"S. Russell, M. Stynes","doi":"10.1515/jnma-2017-0079","DOIUrl":null,"url":null,"abstract":"Abstract We consider a singularly perturbed linear reaction–diffusion problem posed on the unit square in two dimensions. Standard finite element analyses use an energy norm, but for problems of this type, this norm is too weak to capture adequately the behaviour of the boundary layers that appear in the solution. To address this deficiency, a stronger so-called ‘balanced’ norm has been considered recently by several researchers. In this paper we shall use two-scale and multiscale sparse grid finite element methods on a Shishkin mesh to solve the reaction–diffusion problem, and prove convergence of their computed solutions in the balanced norm.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2019-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Balanced-norm error estimates for sparse grid finite element methods applied to singularly perturbed reaction–diffusion problems\",\"authors\":\"S. Russell, M. Stynes\",\"doi\":\"10.1515/jnma-2017-0079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider a singularly perturbed linear reaction–diffusion problem posed on the unit square in two dimensions. Standard finite element analyses use an energy norm, but for problems of this type, this norm is too weak to capture adequately the behaviour of the boundary layers that appear in the solution. To address this deficiency, a stronger so-called ‘balanced’ norm has been considered recently by several researchers. In this paper we shall use two-scale and multiscale sparse grid finite element methods on a Shishkin mesh to solve the reaction–diffusion problem, and prove convergence of their computed solutions in the balanced norm.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2019-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2017-0079\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2017-0079","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Balanced-norm error estimates for sparse grid finite element methods applied to singularly perturbed reaction–diffusion problems
Abstract We consider a singularly perturbed linear reaction–diffusion problem posed on the unit square in two dimensions. Standard finite element analyses use an energy norm, but for problems of this type, this norm is too weak to capture adequately the behaviour of the boundary layers that appear in the solution. To address this deficiency, a stronger so-called ‘balanced’ norm has been considered recently by several researchers. In this paper we shall use two-scale and multiscale sparse grid finite element methods on a Shishkin mesh to solve the reaction–diffusion problem, and prove convergence of their computed solutions in the balanced norm.
期刊介绍:
The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.