IPM中相互干扰的捕食-食饵系统

Shun-yi Li, Xiangui Xue
{"title":"IPM中相互干扰的捕食-食饵系统","authors":"Shun-yi Li, Xiangui Xue","doi":"10.1109/ICIC.2011.28","DOIUrl":null,"url":null,"abstract":"A predator-prey system with mutual interference concerning Integrated Pest Management (IPM) is considered. The locally stable prey-eradication periodic solution is obtained when the impulsive period is less than some critical value by using Floquet theorem and small amplitude perturbation skills. Otherwise, the system is permanent. Numerical examples show that the system considered has more complicated dynamics behaviors, such as: (1) high-order periodic oscillation, (2) period-doubling bifurcation, (3) symmetry-breaking bifurcation, (4) attractor crisis, etc. Finally, some conclusions are given.","PeriodicalId":6397,"journal":{"name":"2011 Fourth International Conference on Information and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Predator-Prey System with Mutual Interference Concerning IPM\",\"authors\":\"Shun-yi Li, Xiangui Xue\",\"doi\":\"10.1109/ICIC.2011.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A predator-prey system with mutual interference concerning Integrated Pest Management (IPM) is considered. The locally stable prey-eradication periodic solution is obtained when the impulsive period is less than some critical value by using Floquet theorem and small amplitude perturbation skills. Otherwise, the system is permanent. Numerical examples show that the system considered has more complicated dynamics behaviors, such as: (1) high-order periodic oscillation, (2) period-doubling bifurcation, (3) symmetry-breaking bifurcation, (4) attractor crisis, etc. Finally, some conclusions are given.\",\"PeriodicalId\":6397,\"journal\":{\"name\":\"2011 Fourth International Conference on Information and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Information and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIC.2011.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Information and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIC.2011.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了害虫综合治理中相互干扰的捕食者-食饵系统。利用Floquet定理和小振幅摄动技巧,得到了脉冲周期小于某临界值时的局部稳定灭食周期解。否则,系统是永久性的。数值算例表明,所考虑的系统具有更复杂的动力学行为,如:(1)高阶周期振荡,(2)倍周期分岔,(3)对称破缺分岔,(4)吸引子危机等。最后,给出了一些结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Predator-Prey System with Mutual Interference Concerning IPM
A predator-prey system with mutual interference concerning Integrated Pest Management (IPM) is considered. The locally stable prey-eradication periodic solution is obtained when the impulsive period is less than some critical value by using Floquet theorem and small amplitude perturbation skills. Otherwise, the system is permanent. Numerical examples show that the system considered has more complicated dynamics behaviors, such as: (1) high-order periodic oscillation, (2) period-doubling bifurcation, (3) symmetry-breaking bifurcation, (4) attractor crisis, etc. Finally, some conclusions are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信