大型文档集合的交互式摘要

Benjamin Hättasch, Christian M. Meyer, Carsten Binnig
{"title":"大型文档集合的交互式摘要","authors":"Benjamin Hättasch, Christian M. Meyer, Carsten Binnig","doi":"10.1145/3328519.3329129","DOIUrl":null,"url":null,"abstract":"We present a new system for custom summarizations of large text corpora at interactive speed. The task of producing textual summaries is an important step to understand large collections of topic-related documents and has many real-world applications in journalism, medicine, and many more. Key to our system is that the summarization model is refined by user feedback and called multiple times to improve the quality of the summaries iteratively. To that end, the human is brought into the loop to gather feedback in every iteration about which aspects of the intermediate summaries satisfy their individual information needs. Our system consists of a sampling component and a learned model to produce a textual summary. As we show in our evaluation, our system can provide a similar quality level as existing summarization models that are working on the full corpus and hence cannot provide interactive speeds.","PeriodicalId":92279,"journal":{"name":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interactive Summarization of Large Document Collections\",\"authors\":\"Benjamin Hättasch, Christian M. Meyer, Carsten Binnig\",\"doi\":\"10.1145/3328519.3329129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new system for custom summarizations of large text corpora at interactive speed. The task of producing textual summaries is an important step to understand large collections of topic-related documents and has many real-world applications in journalism, medicine, and many more. Key to our system is that the summarization model is refined by user feedback and called multiple times to improve the quality of the summaries iteratively. To that end, the human is brought into the loop to gather feedback in every iteration about which aspects of the intermediate summaries satisfy their individual information needs. Our system consists of a sampling component and a learned model to produce a textual summary. As we show in our evaluation, our system can provide a similar quality level as existing summarization models that are working on the full corpus and hence cannot provide interactive speeds.\",\"PeriodicalId\":92279,\"journal\":{\"name\":\"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3328519.3329129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3328519.3329129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一个新的系统,以交互速度自定义大型文本语料库摘要。生成文本摘要的任务是理解主题相关文档的大型集合的重要步骤,并且在新闻,医学等许多实际应用中具有许多应用。该系统的关键是通过用户反馈对摘要模型进行改进,并多次调用以迭代提高摘要的质量。为此,将人引入循环中,以便在每次迭代中收集关于中间摘要的哪些方面满足其个人信息需求的反馈。我们的系统由采样组件和学习模型组成,以生成文本摘要。正如我们在评估中显示的那样,我们的系统可以提供与现有的总结模型相似的质量水平,这些模型在完整的语料库上工作,因此不能提供交互速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive Summarization of Large Document Collections
We present a new system for custom summarizations of large text corpora at interactive speed. The task of producing textual summaries is an important step to understand large collections of topic-related documents and has many real-world applications in journalism, medicine, and many more. Key to our system is that the summarization model is refined by user feedback and called multiple times to improve the quality of the summaries iteratively. To that end, the human is brought into the loop to gather feedback in every iteration about which aspects of the intermediate summaries satisfy their individual information needs. Our system consists of a sampling component and a learned model to produce a textual summary. As we show in our evaluation, our system can provide a similar quality level as existing summarization models that are working on the full corpus and hence cannot provide interactive speeds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信