一类lanchester型模型解的渐近性质

Takahiro Ito, T. Ogiwara, H. Usami
{"title":"一类lanchester型模型解的渐近性质","authors":"Takahiro Ito, T. Ogiwara, H. Usami","doi":"10.7153/DEA-2020-12-01","DOIUrl":null,"url":null,"abstract":"An ordinary differential system referred to as Lanchester-type model is studied. Asymptotic properties of solutions for such systems are considered. In particular, we examine how the limit of the solution as time tends to the infinity varies according to the initial data and we find asymptotic form of solutions that decay to (0,0) . Mathematics subject classification (2010): 34C11, 35E10.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"1206 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic properties of solutions of a Lanchester-type model\",\"authors\":\"Takahiro Ito, T. Ogiwara, H. Usami\",\"doi\":\"10.7153/DEA-2020-12-01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ordinary differential system referred to as Lanchester-type model is studied. Asymptotic properties of solutions for such systems are considered. In particular, we examine how the limit of the solution as time tends to the infinity varies according to the initial data and we find asymptotic form of solutions that decay to (0,0) . Mathematics subject classification (2010): 34C11, 35E10.\",\"PeriodicalId\":11162,\"journal\":{\"name\":\"Differential Equations and Applications\",\"volume\":\"1206 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/DEA-2020-12-01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2020-12-01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一种常微分系统,即兰彻斯特型模型。研究了这类系统解的渐近性质。特别地,我们研究了解的极限如何随着时间趋于无穷而根据初始数据变化,我们找到了衰减到(0,0)的解的渐近形式。数学学科分类(2010):34C11, 35E10。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic properties of solutions of a Lanchester-type model
An ordinary differential system referred to as Lanchester-type model is studied. Asymptotic properties of solutions for such systems are considered. In particular, we examine how the limit of the solution as time tends to the infinity varies according to the initial data and we find asymptotic form of solutions that decay to (0,0) . Mathematics subject classification (2010): 34C11, 35E10.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信