{"title":"使用不规则扬声器阵列在多个甜蜜点上基于强度的声场再现","authors":"Huanyu Zuo, P. Samarasinghe, T. Abhayapala","doi":"10.23919/Eusipco47968.2020.9287492","DOIUrl":null,"url":null,"abstract":"Intensity based soundfield reproduction methods are shown to provide impressive human perception of sound localization. However, most of the previous works in this domain either focus on a single sweet spot for the listener, or are constrained to a regular loudspeaker geometry, which is difficult to implement in real-world applications. This paper addresses both of the above challenges. We propose an intensity matching technique to optimally reproduce sound intensity at multiple sweet spots using an irregular loudspeaker array. The performance of the proposed method is evaluated by comparing it with the pressure and velocity matching method through numerical simulations and perceptual experiments. The results show that the proposed method has an improved performance.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"93 1","pages":"486-490"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intensity Based Soundfield Reproduction over Multiple Sweet Spots Using an Irregular Loudspeaker Array\",\"authors\":\"Huanyu Zuo, P. Samarasinghe, T. Abhayapala\",\"doi\":\"10.23919/Eusipco47968.2020.9287492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intensity based soundfield reproduction methods are shown to provide impressive human perception of sound localization. However, most of the previous works in this domain either focus on a single sweet spot for the listener, or are constrained to a regular loudspeaker geometry, which is difficult to implement in real-world applications. This paper addresses both of the above challenges. We propose an intensity matching technique to optimally reproduce sound intensity at multiple sweet spots using an irregular loudspeaker array. The performance of the proposed method is evaluated by comparing it with the pressure and velocity matching method through numerical simulations and perceptual experiments. The results show that the proposed method has an improved performance.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"93 1\",\"pages\":\"486-490\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intensity Based Soundfield Reproduction over Multiple Sweet Spots Using an Irregular Loudspeaker Array
Intensity based soundfield reproduction methods are shown to provide impressive human perception of sound localization. However, most of the previous works in this domain either focus on a single sweet spot for the listener, or are constrained to a regular loudspeaker geometry, which is difficult to implement in real-world applications. This paper addresses both of the above challenges. We propose an intensity matching technique to optimally reproduce sound intensity at multiple sweet spots using an irregular loudspeaker array. The performance of the proposed method is evaluated by comparing it with the pressure and velocity matching method through numerical simulations and perceptual experiments. The results show that the proposed method has an improved performance.