{"title":"直接和多边形和单纯形方程的格拉斯曼参数化解","authors":"A. Dimakis, I. Korepanov","doi":"10.1063/5.0035760","DOIUrl":null,"url":null,"abstract":"We consider polygon and simplex equations, of which the simplest nontrivial examples are pentagon (5-gon) and Yang--Baxter (2-simplex), respectively. We examine the general structure of (2n+1)-gon and 2n-simplex equations in direct sums of vector spaces. Then we provide a construction for their solutions, parameterized by elements of the Grassmannian Gr(n+1,2n+1).","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Grassmannian-parameterized solutions to direct-sum polygon and simplex equations\",\"authors\":\"A. Dimakis, I. Korepanov\",\"doi\":\"10.1063/5.0035760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider polygon and simplex equations, of which the simplest nontrivial examples are pentagon (5-gon) and Yang--Baxter (2-simplex), respectively. We examine the general structure of (2n+1)-gon and 2n-simplex equations in direct sums of vector spaces. Then we provide a construction for their solutions, parameterized by elements of the Grassmannian Gr(n+1,2n+1).\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0035760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0035760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Grassmannian-parameterized solutions to direct-sum polygon and simplex equations
We consider polygon and simplex equations, of which the simplest nontrivial examples are pentagon (5-gon) and Yang--Baxter (2-simplex), respectively. We examine the general structure of (2n+1)-gon and 2n-simplex equations in direct sums of vector spaces. Then we provide a construction for their solutions, parameterized by elements of the Grassmannian Gr(n+1,2n+1).