{"title":"直角三角形Menchov-Rademacher算子的上界","authors":"A. Vagharshakyan","doi":"10.1090/proc/15950","DOIUrl":null,"url":null,"abstract":"We introduce the Menchov-Rademacher operator for right triangles - a sample two-dimensional maximal operator, and prove an upper bound for its $L_2$ norm.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"140 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An upper bound for the Menchov-Rademacher operator for right triangles\",\"authors\":\"A. Vagharshakyan\",\"doi\":\"10.1090/proc/15950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the Menchov-Rademacher operator for right triangles - a sample two-dimensional maximal operator, and prove an upper bound for its $L_2$ norm.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"140 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/15950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An upper bound for the Menchov-Rademacher operator for right triangles
We introduce the Menchov-Rademacher operator for right triangles - a sample two-dimensional maximal operator, and prove an upper bound for its $L_2$ norm.