AdaBoosting基于案例的推荐系统

S. Singal, Tejal, Bhawna Juneja
{"title":"AdaBoosting基于案例的推荐系统","authors":"S. Singal, Tejal, Bhawna Juneja","doi":"10.1109/INCITE.2016.7857591","DOIUrl":null,"url":null,"abstract":"Recommender systems are ways for web personalization and crafting the browsing experience to the users' specific needs and are tools for communicating with large and complicated information spaces. It give a personalized view of these spaces, ranking items likely to be of interest to the user. Now-a-days many on-line e-commerce applications like Amazon.com, Netflix etc. use personalized recommendations. Recommender systems research has integrated a wide range of artificial intelligence techniques including machine learning, data mining, user modeling, case-based reasoning, and constraint satisfaction, among others. The purpose of this paper is to show how recommendations can be generated for case-based scenarios using AdaBoost machine learning algorithm. The technique has been used to predict the restaurants a user may like based on the data gathered from past.","PeriodicalId":59618,"journal":{"name":"下一代","volume":"71 1","pages":"62-66"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"AdaBoosting for case-based recommendation system\",\"authors\":\"S. Singal, Tejal, Bhawna Juneja\",\"doi\":\"10.1109/INCITE.2016.7857591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems are ways for web personalization and crafting the browsing experience to the users' specific needs and are tools for communicating with large and complicated information spaces. It give a personalized view of these spaces, ranking items likely to be of interest to the user. Now-a-days many on-line e-commerce applications like Amazon.com, Netflix etc. use personalized recommendations. Recommender systems research has integrated a wide range of artificial intelligence techniques including machine learning, data mining, user modeling, case-based reasoning, and constraint satisfaction, among others. The purpose of this paper is to show how recommendations can be generated for case-based scenarios using AdaBoost machine learning algorithm. The technique has been used to predict the restaurants a user may like based on the data gathered from past.\",\"PeriodicalId\":59618,\"journal\":{\"name\":\"下一代\",\"volume\":\"71 1\",\"pages\":\"62-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"下一代\",\"FirstCategoryId\":\"1092\",\"ListUrlMain\":\"https://doi.org/10.1109/INCITE.2016.7857591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"下一代","FirstCategoryId":"1092","ListUrlMain":"https://doi.org/10.1109/INCITE.2016.7857591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

推荐系统是一种网络个性化的方式,可以根据用户的特定需求精心制作浏览体验,也是与庞大而复杂的信息空间进行交流的工具。它提供了这些空间的个性化视图,对用户可能感兴趣的项目进行排名。如今,许多在线电子商务应用程序,如亚马逊、Netflix等,都使用个性化推荐。推荐系统的研究集成了广泛的人工智能技术,包括机器学习、数据挖掘、用户建模、基于案例的推理和约束满足等。本文的目的是展示如何使用AdaBoost机器学习算法为基于案例的场景生成推荐。这项技术已经被用来根据过去收集的数据来预测用户可能喜欢的餐馆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AdaBoosting for case-based recommendation system
Recommender systems are ways for web personalization and crafting the browsing experience to the users' specific needs and are tools for communicating with large and complicated information spaces. It give a personalized view of these spaces, ranking items likely to be of interest to the user. Now-a-days many on-line e-commerce applications like Amazon.com, Netflix etc. use personalized recommendations. Recommender systems research has integrated a wide range of artificial intelligence techniques including machine learning, data mining, user modeling, case-based reasoning, and constraint satisfaction, among others. The purpose of this paper is to show how recommendations can be generated for case-based scenarios using AdaBoost machine learning algorithm. The technique has been used to predict the restaurants a user may like based on the data gathered from past.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
6212
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信