{"title":"基于网上搜索和信息传递的中国期货价格预测","authors":"Jingyi Liang, Guozhu Jia","doi":"10.1016/j.dsm.2022.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>The synchronicity effect between the financial market and online response for time-series forecasting is an important task with wide applications. This study combines data from the Baidu index (BDI), Google trends (GT), and transfer entropy (TE) to forecast a wide range of futures prices with a focus on China. A forecasting model based on a hybrid gray wolf optimizer (GWO), convolutional neural network (CNN), and long short-term memory (LSTM) is developed. First, Baidu and Google dual-platform search data were selected and constructed as Internet-based consumer price index (ICPI) using principal component analysis. Second, TE is used to quantify the information between online behavior and futures markets. Finally, the effective Internet-based consumer price index (ICPI) and TE are introduced into the GWO-CNN-LSTM model to forecast the daily prices of corn, soybean, polyvinyl chloride (PVC), egg, and rebar futures. The results show that the GWO-CNN-LSTM model has a significant improvement in predicting future prices. Internet-based CPI built on Baidu and Google platforms has a high degree of real-time performance and reduces the platform and language bias of the search data. Our proposed framework can provide predictive decision support for government leaders, market investors, and production activities.</p></div>","PeriodicalId":100353,"journal":{"name":"Data Science and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666764922000376/pdfft?md5=700142358e5a3516b1d3f96c23074de9&pid=1-s2.0-S2666764922000376-main.pdf","citationCount":"14","resultStr":"{\"title\":\"China futures price forecasting based on online search and information transfer\",\"authors\":\"Jingyi Liang, Guozhu Jia\",\"doi\":\"10.1016/j.dsm.2022.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The synchronicity effect between the financial market and online response for time-series forecasting is an important task with wide applications. This study combines data from the Baidu index (BDI), Google trends (GT), and transfer entropy (TE) to forecast a wide range of futures prices with a focus on China. A forecasting model based on a hybrid gray wolf optimizer (GWO), convolutional neural network (CNN), and long short-term memory (LSTM) is developed. First, Baidu and Google dual-platform search data were selected and constructed as Internet-based consumer price index (ICPI) using principal component analysis. Second, TE is used to quantify the information between online behavior and futures markets. Finally, the effective Internet-based consumer price index (ICPI) and TE are introduced into the GWO-CNN-LSTM model to forecast the daily prices of corn, soybean, polyvinyl chloride (PVC), egg, and rebar futures. The results show that the GWO-CNN-LSTM model has a significant improvement in predicting future prices. Internet-based CPI built on Baidu and Google platforms has a high degree of real-time performance and reduces the platform and language bias of the search data. Our proposed framework can provide predictive decision support for government leaders, market investors, and production activities.</p></div>\",\"PeriodicalId\":100353,\"journal\":{\"name\":\"Data Science and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666764922000376/pdfft?md5=700142358e5a3516b1d3f96c23074de9&pid=1-s2.0-S2666764922000376-main.pdf\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Science and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666764922000376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666764922000376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
China futures price forecasting based on online search and information transfer
The synchronicity effect between the financial market and online response for time-series forecasting is an important task with wide applications. This study combines data from the Baidu index (BDI), Google trends (GT), and transfer entropy (TE) to forecast a wide range of futures prices with a focus on China. A forecasting model based on a hybrid gray wolf optimizer (GWO), convolutional neural network (CNN), and long short-term memory (LSTM) is developed. First, Baidu and Google dual-platform search data were selected and constructed as Internet-based consumer price index (ICPI) using principal component analysis. Second, TE is used to quantify the information between online behavior and futures markets. Finally, the effective Internet-based consumer price index (ICPI) and TE are introduced into the GWO-CNN-LSTM model to forecast the daily prices of corn, soybean, polyvinyl chloride (PVC), egg, and rebar futures. The results show that the GWO-CNN-LSTM model has a significant improvement in predicting future prices. Internet-based CPI built on Baidu and Google platforms has a high degree of real-time performance and reduces the platform and language bias of the search data. Our proposed framework can provide predictive decision support for government leaders, market investors, and production activities.