基于新Katugampola广义分数积分的Hermite-Hadamard型广义分数不等式

IF 1 Q1 MATHEMATICS
M. Omaba
{"title":"基于新Katugampola广义分数积分的Hermite-Hadamard型广义分数不等式","authors":"M. Omaba","doi":"10.15330/cmp.14.2.475-484","DOIUrl":null,"url":null,"abstract":"A new generalization of the Katugampola generalized fractional integrals in terms of the Mittag-Leffler functions is proposed. Consequently, new generalizations of the Hermite-Hadamard inequalities by this newly proposed fractional integral operator, for a positive convex stochastic process, are established. Other known results are easily deduced as particular cases of these inequalities. The obtained results also hold for any convex function.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized fractional inequalities of the Hermite-Hadamard type via new Katugampola generalized fractional integrals\",\"authors\":\"M. Omaba\",\"doi\":\"10.15330/cmp.14.2.475-484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new generalization of the Katugampola generalized fractional integrals in terms of the Mittag-Leffler functions is proposed. Consequently, new generalizations of the Hermite-Hadamard inequalities by this newly proposed fractional integral operator, for a positive convex stochastic process, are established. Other known results are easily deduced as particular cases of these inequalities. The obtained results also hold for any convex function.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.14.2.475-484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.2.475-484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

提出了用Mittag-Leffler函数对Katugampola广义分数积分的一种新的推广。因此,对于一个正凸随机过程,利用新提出的分数积分算子,建立了Hermite-Hadamard不等式的新推广。其他已知的结果很容易推断为这些不等式的特殊情况。所得结果也适用于任何凸函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized fractional inequalities of the Hermite-Hadamard type via new Katugampola generalized fractional integrals
A new generalization of the Katugampola generalized fractional integrals in terms of the Mittag-Leffler functions is proposed. Consequently, new generalizations of the Hermite-Hadamard inequalities by this newly proposed fractional integral operator, for a positive convex stochastic process, are established. Other known results are easily deduced as particular cases of these inequalities. The obtained results also hold for any convex function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信