为什么我们的空间是三维的物理解释

Hua Ma
{"title":"为什么我们的空间是三维的物理解释","authors":"Hua Ma","doi":"10.11648/J.AJMP.20170606.12","DOIUrl":null,"url":null,"abstract":"It is a basic, ancient and mysterious issue: why our space is three dimensional? This issue is related to philosophy, mathematics, physics and even religion, and thus aroused great research interests. The author makes an in-depth analysis of the problem, and finally comes to a conclusion: For any vector space with symmetry, orthogonality, homogeneity and completeness, the space dimension must be three on condition that: the energy obeys the law of conservation, the dynamics law is governed by the covariance principle, and thus the cross-product must can be defined in the space. Our space just meets and requires the above constraints, so its dimension is three.","PeriodicalId":7717,"journal":{"name":"American Journal of Modern Physics","volume":"32 1","pages":"122"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Physical Explanation on Why Our Space Is Three Dimensional\",\"authors\":\"Hua Ma\",\"doi\":\"10.11648/J.AJMP.20170606.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is a basic, ancient and mysterious issue: why our space is three dimensional? This issue is related to philosophy, mathematics, physics and even religion, and thus aroused great research interests. The author makes an in-depth analysis of the problem, and finally comes to a conclusion: For any vector space with symmetry, orthogonality, homogeneity and completeness, the space dimension must be three on condition that: the energy obeys the law of conservation, the dynamics law is governed by the covariance principle, and thus the cross-product must can be defined in the space. Our space just meets and requires the above constraints, so its dimension is three.\",\"PeriodicalId\":7717,\"journal\":{\"name\":\"American Journal of Modern Physics\",\"volume\":\"32 1\",\"pages\":\"122\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Modern Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJMP.20170606.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Modern Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJMP.20170606.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这是一个基本的、古老的、神秘的问题:为什么我们的空间是三维的?这个问题涉及到哲学、数学、物理甚至宗教,因此引起了极大的研究兴趣。作者对该问题进行了深入的分析,最后得出结论:对于任何具有对称、正交、齐性和完备性的向量空间,在能量服从守恒定律,动力服从协方差原理的条件下,空间维数必须为3,因此在空间中必须可以定义叉积。我们的空间正好满足并要求上述约束,所以它的维数是3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Physical Explanation on Why Our Space Is Three Dimensional
It is a basic, ancient and mysterious issue: why our space is three dimensional? This issue is related to philosophy, mathematics, physics and even religion, and thus aroused great research interests. The author makes an in-depth analysis of the problem, and finally comes to a conclusion: For any vector space with symmetry, orthogonality, homogeneity and completeness, the space dimension must be three on condition that: the energy obeys the law of conservation, the dynamics law is governed by the covariance principle, and thus the cross-product must can be defined in the space. Our space just meets and requires the above constraints, so its dimension is three.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信