关于检验假设中的一个有用不等式

M. Burnashev
{"title":"关于检验假设中的一个有用不等式","authors":"M. Burnashev","doi":"10.1109/18.681348","DOIUrl":null,"url":null,"abstract":"A simple proof of one probabilistic inequality is presented. Let P and Q be two given probability measures on a measurable space (/spl Xscr/, /spl Ascr/). We consider testing of hypotheses P and Q using one observation. For an arbitrary decision rule, let /spl alpha/ and /spl beta/ denote the two kinds of error probabilities. If both error probabilities have equal costs (or we want to minimize the maximum of them) then it is natural to investigate the minimal possible sum inf{/spl alpha/+/spl beta/} for the best decision rule.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"395 1","pages":"1668-1670"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On One Useful Inequality in Testing of Hypotheses\",\"authors\":\"M. Burnashev\",\"doi\":\"10.1109/18.681348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple proof of one probabilistic inequality is presented. Let P and Q be two given probability measures on a measurable space (/spl Xscr/, /spl Ascr/). We consider testing of hypotheses P and Q using one observation. For an arbitrary decision rule, let /spl alpha/ and /spl beta/ denote the two kinds of error probabilities. If both error probabilities have equal costs (or we want to minimize the maximum of them) then it is natural to investigate the minimal possible sum inf{/spl alpha/+/spl beta/} for the best decision rule.\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"395 1\",\"pages\":\"1668-1670\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/18.681348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/18.681348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

给出了一个概率不等式的简单证明。设P和Q是可测空间(/spl Xscr/, /spl Ascr/)上两个给定的概率测度。我们考虑用一个观察来检验假设P和Q。对于任意决策规则,设/spl alpha/和/spl beta/表示两种错误概率。如果两个错误概率的代价相等(或者我们想要最小化它们的最大值),那么很自然地要研究最佳决策规则的最小可能和inf{/spl alpha/+/spl beta/}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On One Useful Inequality in Testing of Hypotheses
A simple proof of one probabilistic inequality is presented. Let P and Q be two given probability measures on a measurable space (/spl Xscr/, /spl Ascr/). We consider testing of hypotheses P and Q using one observation. For an arbitrary decision rule, let /spl alpha/ and /spl beta/ denote the two kinds of error probabilities. If both error probabilities have equal costs (or we want to minimize the maximum of them) then it is natural to investigate the minimal possible sum inf{/spl alpha/+/spl beta/} for the best decision rule.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信