{"title":"三维时域有限差分代码的并行化及融合等离子体中电磁波传播的物理研究","authors":"C. Tsironis, A. Papadopoulos","doi":"10.1080/09205071.2023.2241862","DOIUrl":null,"url":null,"abstract":"Numerical codes for electromagnetic wave propagation in magnetized plasmas are mainly based on frequency-domain asymptotic methods, which provide a fast solution and are thus valuable for experiment design and control applications. However, in several cases of practical interest (e.g. mode conversion), these tools run close to their limits of validity and should be compared to full-wave solutions. The code RFFW solves Maxwell's equations with the finite-difference time-domain method in 3D geometry, for scenarios involving high-frequency waves with arbitrary electric field spectrum in plasmas with axisymmetric equilibrium. In fusion-related problems, the code may conduct investigations of wave propagation and absorption relevant to auxiliary plasma heating and current drive, reflectometry and instability control. The code has been parallelized with a hybrid OpenMP-MPI scheme, which has allowed exploiting the much larger processing power and memory of current-day supercomputers. In this work, we present the main aspects of the physics implemented in the code, and also refer shortly to the parallelization scheme. Furthermore, we show results that exhibit the strong scaling performance of the code, and examine cases of electron-cyclotron heating application in medium-sized tokamaks.","PeriodicalId":15650,"journal":{"name":"Journal of Electromagnetic Waves and Applications","volume":"45 1","pages":"1366 - 1393"},"PeriodicalIF":1.2000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallelization of a 3D FDTD code and physics studies of electromagnetic wave propagation in fusion plasmas\",\"authors\":\"C. Tsironis, A. Papadopoulos\",\"doi\":\"10.1080/09205071.2023.2241862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical codes for electromagnetic wave propagation in magnetized plasmas are mainly based on frequency-domain asymptotic methods, which provide a fast solution and are thus valuable for experiment design and control applications. However, in several cases of practical interest (e.g. mode conversion), these tools run close to their limits of validity and should be compared to full-wave solutions. The code RFFW solves Maxwell's equations with the finite-difference time-domain method in 3D geometry, for scenarios involving high-frequency waves with arbitrary electric field spectrum in plasmas with axisymmetric equilibrium. In fusion-related problems, the code may conduct investigations of wave propagation and absorption relevant to auxiliary plasma heating and current drive, reflectometry and instability control. The code has been parallelized with a hybrid OpenMP-MPI scheme, which has allowed exploiting the much larger processing power and memory of current-day supercomputers. In this work, we present the main aspects of the physics implemented in the code, and also refer shortly to the parallelization scheme. Furthermore, we show results that exhibit the strong scaling performance of the code, and examine cases of electron-cyclotron heating application in medium-sized tokamaks.\",\"PeriodicalId\":15650,\"journal\":{\"name\":\"Journal of Electromagnetic Waves and Applications\",\"volume\":\"45 1\",\"pages\":\"1366 - 1393\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electromagnetic Waves and Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205071.2023.2241862\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electromagnetic Waves and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205071.2023.2241862","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Parallelization of a 3D FDTD code and physics studies of electromagnetic wave propagation in fusion plasmas
Numerical codes for electromagnetic wave propagation in magnetized plasmas are mainly based on frequency-domain asymptotic methods, which provide a fast solution and are thus valuable for experiment design and control applications. However, in several cases of practical interest (e.g. mode conversion), these tools run close to their limits of validity and should be compared to full-wave solutions. The code RFFW solves Maxwell's equations with the finite-difference time-domain method in 3D geometry, for scenarios involving high-frequency waves with arbitrary electric field spectrum in plasmas with axisymmetric equilibrium. In fusion-related problems, the code may conduct investigations of wave propagation and absorption relevant to auxiliary plasma heating and current drive, reflectometry and instability control. The code has been parallelized with a hybrid OpenMP-MPI scheme, which has allowed exploiting the much larger processing power and memory of current-day supercomputers. In this work, we present the main aspects of the physics implemented in the code, and also refer shortly to the parallelization scheme. Furthermore, we show results that exhibit the strong scaling performance of the code, and examine cases of electron-cyclotron heating application in medium-sized tokamaks.
期刊介绍:
Journal of Electromagnetic Waves and Applications covers all aspects of electromagnetic wave theory and its applications. It publishes original papers and review articles on new theories, methodologies, and computational techniques, as well as interpretations of both theoretical and experimental results.
The scope of this Journal remains broad and includes the following topics:
wave propagation theory
propagation in random media
waves in composites and amorphous materials
optical and millimeter wave techniques
fiber/waveguide optics
optical sensing
sub-micron structures
nano-optics and sub-wavelength effects
photonics and plasmonics
atmospherics and ionospheric effects on wave propagation
geophysical subsurface probing
remote sensing
inverse scattering
antenna theory and applications
fields and network theory
transients
radar measurements and applications
active experiments using space vehicles
electromagnetic compatibility and interferometry
medical applications and biological effects
ferrite devices
high power devices and systems
numerical methods
The aim of this Journal is to report recent advancements and modern developments in the electromagnetic science and new exciting applications covering the aforementioned fields.