船用超滤膜涂层的声学性能

IF 1.9 4区 工程技术 Q2 ACOUSTICS
Gyani Shankar Sharma, M. Toyoda, A. Skvortsov, I. MacGillivray, N. Kessissoglou
{"title":"船用超滤膜涂层的声学性能","authors":"Gyani Shankar Sharma, M. Toyoda, A. Skvortsov, I. MacGillivray, N. Kessissoglou","doi":"10.1115/1.4053543","DOIUrl":null,"url":null,"abstract":"\n Time and frequency domain numerical models are developed to investigate the acoustic performance of metasurface coatings for marine applications. The coating designs are composed of periodic air-filled cavities embedded in a soft elastic medium, which is attached to a hard backing and submerged in water. Numerical results for a metamaterial coating with cylindrical cavities are favourably compared with analytical and experimental results from the literature. Frequencies associated with peak sound absorption as a function of the geometric parameters of the cavities and material properties of the host medium are predicted. Variation in the cavity dimensions that modifies the cylindrical-shaped cavities to flat disks or thin needles is modelled. Results reveal that high sound absorption occurs when either the diameter or length of the cavities is reduced. Physical mechanisms governing sound absorption for the various cavity designs are described.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Acoustic performance of a metascreen-based coating for maritime applications\",\"authors\":\"Gyani Shankar Sharma, M. Toyoda, A. Skvortsov, I. MacGillivray, N. Kessissoglou\",\"doi\":\"10.1115/1.4053543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Time and frequency domain numerical models are developed to investigate the acoustic performance of metasurface coatings for marine applications. The coating designs are composed of periodic air-filled cavities embedded in a soft elastic medium, which is attached to a hard backing and submerged in water. Numerical results for a metamaterial coating with cylindrical cavities are favourably compared with analytical and experimental results from the literature. Frequencies associated with peak sound absorption as a function of the geometric parameters of the cavities and material properties of the host medium are predicted. Variation in the cavity dimensions that modifies the cylindrical-shaped cavities to flat disks or thin needles is modelled. Results reveal that high sound absorption occurs when either the diameter or length of the cavities is reduced. Physical mechanisms governing sound absorption for the various cavity designs are described.\",\"PeriodicalId\":49957,\"journal\":{\"name\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4053543\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4053543","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 7

摘要

建立了时域和频域数值模型来研究船舶用超表面涂层的声学性能。该涂层设计由嵌入软弹性介质中的周期性充气腔组成,该介质附着在坚硬的衬底上并浸没在水中。对具有圆柱腔的超材料涂层的数值计算结果与文献中的分析和实验结果进行了比较。预测了与吸声峰值相关的频率与空腔几何参数和介质材料特性的关系。对将圆柱形腔修改为平盘或细针的腔体尺寸的变化进行了建模。结果表明,减小空腔的直径或长度都能产生高吸声。描述了控制各种腔体设计吸声的物理机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acoustic performance of a metascreen-based coating for maritime applications
Time and frequency domain numerical models are developed to investigate the acoustic performance of metasurface coatings for marine applications. The coating designs are composed of periodic air-filled cavities embedded in a soft elastic medium, which is attached to a hard backing and submerged in water. Numerical results for a metamaterial coating with cylindrical cavities are favourably compared with analytical and experimental results from the literature. Frequencies associated with peak sound absorption as a function of the geometric parameters of the cavities and material properties of the host medium are predicted. Variation in the cavity dimensions that modifies the cylindrical-shaped cavities to flat disks or thin needles is modelled. Results reveal that high sound absorption occurs when either the diameter or length of the cavities is reduced. Physical mechanisms governing sound absorption for the various cavity designs are described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
11.80%
发文量
79
审稿时长
7 months
期刊介绍: The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences. Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信