由气体喷口形成的冰盖的开口特征

IF 0.7 Q4 GEOSCIENCES, MULTIDISCIPLINARY
G. S. Bordonskiy, S. D. Krylov, A. A. Gurulev, A. Orlov, S. Tsyrenzhapov
{"title":"由气体喷口形成的冰盖的开口特征","authors":"G. S. Bordonskiy, S. D. Krylov, A. A. Gurulev, A. Orlov, S. Tsyrenzhapov","doi":"10.15356/2076-6734-2018-3-405-416","DOIUrl":null,"url":null,"abstract":"«Proparina» (russ) is a small hole in the ice cover formed by steaming of the ice by the gas vents. Some characteristics of this phenomenon were studied by the example of formation of one proparina found in March 2015 in the ice cover of the shallow eutrophic Lake Shakshinskoye (Trans-Baikal Region). The interest in this object is due to the fact that a proparina, unlike a polynya (small water opening in ice), is formed after the establishment of the ice cover and it can appear in those parts of a reservoir where there is no clearly expressed inflow or outflow of water. Although proparinas do often occur on some water bodies, e.g. Lake Baikal, a detailed description of their structure and process of formation is not available. Research on features of the proparina in the ice of the Lake Shakshinskoye and adjacent areas of this reservoir was carried out on March 25 and 28 in 2015. Melting at the lower and upper ice cover boundaries started at that time, and it was found that the proparina under investigation was formed in the center of a dome-shaped area where the ice thickness decreased compared to the adjoining parts within a distance of 200 meters. Gradient of the lower surface in the dome was on average 5 centimeters per 100 meters at a distance from the center. We found a narrow channel in the ice through which gas came into the proparina in the form of separate portions. The maximum recorded volume of gas that came into the open proparina reached 10 l/min. The channel is supposed to be formed at the end of winter period due to the release of gas during the melting of the lower layers of the ice cover and the subsequent movement of gas bubbles into the center of the dome. To study the ice cover structure, we measured thermo-microwave self-radiation of the “ice-water” system in the centimeter range. Such measurements allow detecting changes in ice thickness with an accuracy of 1 cm. It is assumed that the accumulation of gases under the ice causes the instability of the water column due to warming by the heat fl w from the bottom layers and initiates the circulation and, thus, formation of proparina.","PeriodicalId":43880,"journal":{"name":"Led i Sneg-Ice and Snow","volume":"71 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics of opening in the ice cover formed by the gas vents\",\"authors\":\"G. S. Bordonskiy, S. D. Krylov, A. A. Gurulev, A. Orlov, S. Tsyrenzhapov\",\"doi\":\"10.15356/2076-6734-2018-3-405-416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"«Proparina» (russ) is a small hole in the ice cover formed by steaming of the ice by the gas vents. Some characteristics of this phenomenon were studied by the example of formation of one proparina found in March 2015 in the ice cover of the shallow eutrophic Lake Shakshinskoye (Trans-Baikal Region). The interest in this object is due to the fact that a proparina, unlike a polynya (small water opening in ice), is formed after the establishment of the ice cover and it can appear in those parts of a reservoir where there is no clearly expressed inflow or outflow of water. Although proparinas do often occur on some water bodies, e.g. Lake Baikal, a detailed description of their structure and process of formation is not available. Research on features of the proparina in the ice of the Lake Shakshinskoye and adjacent areas of this reservoir was carried out on March 25 and 28 in 2015. Melting at the lower and upper ice cover boundaries started at that time, and it was found that the proparina under investigation was formed in the center of a dome-shaped area where the ice thickness decreased compared to the adjoining parts within a distance of 200 meters. Gradient of the lower surface in the dome was on average 5 centimeters per 100 meters at a distance from the center. We found a narrow channel in the ice through which gas came into the proparina in the form of separate portions. The maximum recorded volume of gas that came into the open proparina reached 10 l/min. The channel is supposed to be formed at the end of winter period due to the release of gas during the melting of the lower layers of the ice cover and the subsequent movement of gas bubbles into the center of the dome. To study the ice cover structure, we measured thermo-microwave self-radiation of the “ice-water” system in the centimeter range. Such measurements allow detecting changes in ice thickness with an accuracy of 1 cm. It is assumed that the accumulation of gases under the ice causes the instability of the water column due to warming by the heat fl w from the bottom layers and initiates the circulation and, thus, formation of proparina.\",\"PeriodicalId\":43880,\"journal\":{\"name\":\"Led i Sneg-Ice and Snow\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Led i Sneg-Ice and Snow\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15356/2076-6734-2018-3-405-416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Led i Sneg-Ice and Snow","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15356/2076-6734-2018-3-405-416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

“Proparina”(russ)是由气体喷口的冰蒸汽形成的冰盖上的一个小洞。以2015年3月在跨贝加尔湖浅层富营养化湖泊沙克辛斯科耶(Shakshinskoye)冰盖中发现的一个proparina形成为例,研究了这一现象的一些特征。对这一对象的兴趣是由于proparina不同于polynya(冰上的小水口),它是在冰盖形成后形成的,它可以出现在没有明显水流流入或流出的水库部分。虽然proparinas经常出现在某些水体上,例如贝加尔湖,但对其结构和形成过程的详细描述尚不清楚。2015年3月25日和28日,对沙克欣斯科耶湖及水库周边地区冰中冰原的特征进行了研究。当时,下、上冰盖边界开始融化,研究发现,被调查的proparina形成于一个圆顶状区域的中心,在200米的距离内,冰的厚度比相邻部分减少。在距离中心的距离上,穹顶下表面的梯度平均为每100米5厘米。我们在冰中发现了一条狭窄的通道,气体通过这个通道以不同部分的形式进入丙烷。进入开放式丙烷的最大记录气量达到10l /min。该通道被认为是在冬季结束时形成的,因为在冰盖的下层融化过程中释放出气体,随后气泡运动到圆顶的中心。为了研究冰盖结构,我们在厘米尺度上测量了“冰-水”系统的热微波自辐射。这样的测量可以以1厘米的精度探测冰厚的变化。据推测,冰下气体的积累由于来自底层的热流变暖而导致水柱不稳定,并引发循环,从而形成丙烷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characteristics of opening in the ice cover formed by the gas vents
«Proparina» (russ) is a small hole in the ice cover formed by steaming of the ice by the gas vents. Some characteristics of this phenomenon were studied by the example of formation of one proparina found in March 2015 in the ice cover of the shallow eutrophic Lake Shakshinskoye (Trans-Baikal Region). The interest in this object is due to the fact that a proparina, unlike a polynya (small water opening in ice), is formed after the establishment of the ice cover and it can appear in those parts of a reservoir where there is no clearly expressed inflow or outflow of water. Although proparinas do often occur on some water bodies, e.g. Lake Baikal, a detailed description of their structure and process of formation is not available. Research on features of the proparina in the ice of the Lake Shakshinskoye and adjacent areas of this reservoir was carried out on March 25 and 28 in 2015. Melting at the lower and upper ice cover boundaries started at that time, and it was found that the proparina under investigation was formed in the center of a dome-shaped area where the ice thickness decreased compared to the adjoining parts within a distance of 200 meters. Gradient of the lower surface in the dome was on average 5 centimeters per 100 meters at a distance from the center. We found a narrow channel in the ice through which gas came into the proparina in the form of separate portions. The maximum recorded volume of gas that came into the open proparina reached 10 l/min. The channel is supposed to be formed at the end of winter period due to the release of gas during the melting of the lower layers of the ice cover and the subsequent movement of gas bubbles into the center of the dome. To study the ice cover structure, we measured thermo-microwave self-radiation of the “ice-water” system in the centimeter range. Such measurements allow detecting changes in ice thickness with an accuracy of 1 cm. It is assumed that the accumulation of gases under the ice causes the instability of the water column due to warming by the heat fl w from the bottom layers and initiates the circulation and, thus, formation of proparina.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Led i Sneg-Ice and Snow
Led i Sneg-Ice and Snow GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
1.50
自引率
42.90%
发文量
11
审稿时长
8 weeks
期刊介绍: The journal was established with the aim of publishing new research results of the Earth cryosphere. Results of works in physics, mechanics, geophysics, and geochemistry of snow and ice are published here together with geographical aspects of the snow-ice phenomena occurrence in their interaction with other components of the environment. The challenge was to discuss the latest results of investigations carried out on Russia’s territory and works performed by Russian investigators together with foreign colleagues. Editorial board works in collaboration with Glaciological Association that is professional community of specialists in glaciology from all republics of the Former Soviet Union which are now new independent states. The journal serves as a platform for the presentation and discussion of new discoveries and results which help to elucidate the state of the Earth’s cryosphere and the characteristics of the evolution of the snow-ice processes and phenomena under the current conditions of rapid climate change.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信