进入惯性约束聚变燃料的混合射流周围的磁化

J. Sadler, Hui Li, B. Haines
{"title":"进入惯性约束聚变燃料的混合射流周围的磁化","authors":"J. Sadler, Hui Li, B. Haines","doi":"10.1063/5.0012959","DOIUrl":null,"url":null,"abstract":"Engineering features are known to cause jets of ablator material to enter the fuel hot-spot in inertial confinement fusion implosions. The Biermann battery mechanism wraps them in self-generated magnetic field. We show that higher-Z jets have an additional thermoelectric magnetic source term that is not present for hydrogen jets, verified here through a kinetic simulation. It has similar magnitude to the Biermann term. We then include this in an extended magneto-hydrodynamics approach to post-process an xRAGE radiation-hydrodynamic implosion simulation. The simulation includes an accurate model for the capsule fill tube, producing a dense carbon jet that becomes wrapped in a 4000T magnetic field. A simple spherical carbon mix model shows that this insulates the electron heat conduction enough to cause contraction of the jet to an optically thick equilibrium. The denser magnetized jet hydrodynamics could change its core penetration and therefore the final mix mass, which is known to be well correlated with fusion yield degradation. Fully exploring this will require self-consistent magneto-hydrodynamic simulations. Experimental signatures of this self-magnetization may emerge in the high energy neutron spectrum.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Magnetization around mix jets entering inertial confinement fusion fuel\",\"authors\":\"J. Sadler, Hui Li, B. Haines\",\"doi\":\"10.1063/5.0012959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engineering features are known to cause jets of ablator material to enter the fuel hot-spot in inertial confinement fusion implosions. The Biermann battery mechanism wraps them in self-generated magnetic field. We show that higher-Z jets have an additional thermoelectric magnetic source term that is not present for hydrogen jets, verified here through a kinetic simulation. It has similar magnitude to the Biermann term. We then include this in an extended magneto-hydrodynamics approach to post-process an xRAGE radiation-hydrodynamic implosion simulation. The simulation includes an accurate model for the capsule fill tube, producing a dense carbon jet that becomes wrapped in a 4000T magnetic field. A simple spherical carbon mix model shows that this insulates the electron heat conduction enough to cause contraction of the jet to an optically thick equilibrium. The denser magnetized jet hydrodynamics could change its core penetration and therefore the final mix mass, which is known to be well correlated with fusion yield degradation. Fully exploring this will require self-consistent magneto-hydrodynamic simulations. Experimental signatures of this self-magnetization may emerge in the high energy neutron spectrum.\",\"PeriodicalId\":8461,\"journal\":{\"name\":\"arXiv: Plasma Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Plasma Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0012959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0012959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

众所周知,在惯性约束聚变内爆中,工程特性会导致烧蚀材料的射流进入燃料热点。比尔曼电池机制将它们包裹在自生磁场中。我们表明,高z射流有一个额外的热电磁力源项,这是不存在于氢射流,在这里通过动力学模拟验证。它和比尔曼项有相似的大小。然后,我们将其包含在扩展的磁流体动力学方法中,以后处理xRAGE辐射-流体动力学内爆模拟。模拟包括胶囊填充管的精确模型,产生密集的碳射流,被包裹在4000T的磁场中。一个简单的球形碳混合模型表明,这足以隔离电子热传导,使射流收缩到光学厚度平衡。更密集的磁化射流流体力学可以改变其核心穿透,从而改变最终的混合质量,这与熔合屈服退化有很好的相关性。充分探索这一点将需要自洽磁流体动力学模拟。这种自磁化的实验特征可能出现在高能中子谱中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetization around mix jets entering inertial confinement fusion fuel
Engineering features are known to cause jets of ablator material to enter the fuel hot-spot in inertial confinement fusion implosions. The Biermann battery mechanism wraps them in self-generated magnetic field. We show that higher-Z jets have an additional thermoelectric magnetic source term that is not present for hydrogen jets, verified here through a kinetic simulation. It has similar magnitude to the Biermann term. We then include this in an extended magneto-hydrodynamics approach to post-process an xRAGE radiation-hydrodynamic implosion simulation. The simulation includes an accurate model for the capsule fill tube, producing a dense carbon jet that becomes wrapped in a 4000T magnetic field. A simple spherical carbon mix model shows that this insulates the electron heat conduction enough to cause contraction of the jet to an optically thick equilibrium. The denser magnetized jet hydrodynamics could change its core penetration and therefore the final mix mass, which is known to be well correlated with fusion yield degradation. Fully exploring this will require self-consistent magneto-hydrodynamic simulations. Experimental signatures of this self-magnetization may emerge in the high energy neutron spectrum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信