C. Fournet, N. Swamy, Juan Chen, Pierre-Évariste Dagand, Pierre-Yves Strub, B. Livshits
{"title":"完全抽象编译到JavaScript","authors":"C. Fournet, N. Swamy, Juan Chen, Pierre-Évariste Dagand, Pierre-Yves Strub, B. Livshits","doi":"10.1145/2429069.2429114","DOIUrl":null,"url":null,"abstract":"Many tools allow programmers to develop applications in high-level languages and deploy them in web browsers via compilation to JavaScript. While practical and widely used, these compilers are ad hoc: no guarantee is provided on their correctness for whole programs, nor their security for programs executed within arbitrary JavaScript contexts. This paper presents a compiler with such guarantees. We compile an ML-like language with higher-order functions and references to JavaScript, while preserving all source program properties. Relying on type-based invariants and applicative bisimilarity, we show full abstraction: two programs are equivalent in all source contexts if and only if their wrapped translations are equivalent in all JavaScript contexts. We evaluate our compiler on sample programs, including a series of secure libraries.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":"1 1","pages":"371-384"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"107","resultStr":"{\"title\":\"Fully abstract compilation to JavaScript\",\"authors\":\"C. Fournet, N. Swamy, Juan Chen, Pierre-Évariste Dagand, Pierre-Yves Strub, B. Livshits\",\"doi\":\"10.1145/2429069.2429114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many tools allow programmers to develop applications in high-level languages and deploy them in web browsers via compilation to JavaScript. While practical and widely used, these compilers are ad hoc: no guarantee is provided on their correctness for whole programs, nor their security for programs executed within arbitrary JavaScript contexts. This paper presents a compiler with such guarantees. We compile an ML-like language with higher-order functions and references to JavaScript, while preserving all source program properties. Relying on type-based invariants and applicative bisimilarity, we show full abstraction: two programs are equivalent in all source contexts if and only if their wrapped translations are equivalent in all JavaScript contexts. We evaluate our compiler on sample programs, including a series of secure libraries.\",\"PeriodicalId\":20683,\"journal\":{\"name\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"volume\":\"1 1\",\"pages\":\"371-384\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"107\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2429069.2429114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2429069.2429114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Many tools allow programmers to develop applications in high-level languages and deploy them in web browsers via compilation to JavaScript. While practical and widely used, these compilers are ad hoc: no guarantee is provided on their correctness for whole programs, nor their security for programs executed within arbitrary JavaScript contexts. This paper presents a compiler with such guarantees. We compile an ML-like language with higher-order functions and references to JavaScript, while preserving all source program properties. Relying on type-based invariants and applicative bisimilarity, we show full abstraction: two programs are equivalent in all source contexts if and only if their wrapped translations are equivalent in all JavaScript contexts. We evaluate our compiler on sample programs, including a series of secure libraries.