一类广义Wright-Fisher模型的渐近谱系

IF 0.7 Q3 STATISTICS & PROBABILITY
T. Huillet, M. Möhle
{"title":"一类广义Wright-Fisher模型的渐近谱系","authors":"T. Huillet, M. Möhle","doi":"10.15559/21-vmsta196","DOIUrl":null,"url":null,"abstract":"We study a class of Cannings models with population size N having a mixed multinomial offspring distribution with random success probabilities W1, . . . ,WN induced by independent and identically distributed positive random variables X1, X2, . . . via Wi := Xi/SN , i ∈ {1, . . . , N}, where SN := X1 + · · · + XN . The ancestral lineages are hence based on a sampling with replacement strategy from a random partition of the unit interval into N subintervals of lengths W1, . . . ,WN . Convergence results for the genealogy of these Cannings models are provided under regularly varying assumptions on the tail distribution of X1. In the limit several coalescent processes with multiple and simultaneous multiple collisions occur. The results extend those obtained in [15] for the case when X1 is Pareto distributed and complement those obtained in [37] for models where one samples without replacement from a supercritical branching process.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"132 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Asymptotic genealogies for a class of generalized Wright–Fisher models\",\"authors\":\"T. Huillet, M. Möhle\",\"doi\":\"10.15559/21-vmsta196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a class of Cannings models with population size N having a mixed multinomial offspring distribution with random success probabilities W1, . . . ,WN induced by independent and identically distributed positive random variables X1, X2, . . . via Wi := Xi/SN , i ∈ {1, . . . , N}, where SN := X1 + · · · + XN . The ancestral lineages are hence based on a sampling with replacement strategy from a random partition of the unit interval into N subintervals of lengths W1, . . . ,WN . Convergence results for the genealogy of these Cannings models are provided under regularly varying assumptions on the tail distribution of X1. In the limit several coalescent processes with multiple and simultaneous multiple collisions occur. The results extend those obtained in [15] for the case when X1 is Pareto distributed and complement those obtained in [37] for models where one samples without replacement from a supercritical branching process.\",\"PeriodicalId\":42685,\"journal\":{\"name\":\"Modern Stochastics-Theory and Applications\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Stochastics-Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15559/21-vmsta196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/21-vmsta196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

摘要

研究了一类总体大小为N的canings模型,其子代分布为混合多项,成功概率为随机概率W1,。,由独立的同分布的正随机变量X1, X2,…, N},其中SN:= X1 +···+ XN。因此,祖先谱系是基于从单位区间随机划分为长度为W1,…的N个子区间的替换策略的抽样。, WN。在X1尾部分布的规则变化假设下,给出了这些坎宁模型谱系的收敛结果。在极限条件下,会发生多个同时发生多次碰撞的聚结过程。在X1为帕累托分布的情况下,结果扩展了[15]中的结果,并补充了[37]中对超临界分支过程中一个样本没有替换的模型的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic genealogies for a class of generalized Wright–Fisher models
We study a class of Cannings models with population size N having a mixed multinomial offspring distribution with random success probabilities W1, . . . ,WN induced by independent and identically distributed positive random variables X1, X2, . . . via Wi := Xi/SN , i ∈ {1, . . . , N}, where SN := X1 + · · · + XN . The ancestral lineages are hence based on a sampling with replacement strategy from a random partition of the unit interval into N subintervals of lengths W1, . . . ,WN . Convergence results for the genealogy of these Cannings models are provided under regularly varying assumptions on the tail distribution of X1. In the limit several coalescent processes with multiple and simultaneous multiple collisions occur. The results extend those obtained in [15] for the case when X1 is Pareto distributed and complement those obtained in [37] for models where one samples without replacement from a supercritical branching process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Stochastics-Theory and Applications
Modern Stochastics-Theory and Applications STATISTICS & PROBABILITY-
CiteScore
1.30
自引率
50.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信