{"title":"广义和球面3-流形的增强不变量界","authors":"Geunho Lim","doi":"10.1142/s1793525322500029","DOIUrl":null,"url":null,"abstract":"We establish enhanced bounds on Cheeger–Gromov [Formula: see text]-invariants for general 3-manifolds and yet stronger bounds for special classes of 3-manifold. As key ingredients, we construct chain null-homotopies whose complexity is linearly bounded by its boundary. This result can be regarded as an algebraic topological analogue of Gromov’s conjecture for quantitative topology. The author hopes for applications to various fields including the smooth knot concordance group, quantitative topology and complexity theory.","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"45 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enhanced Bounds for rho-invariants for both general and spherical 3-manifolds\",\"authors\":\"Geunho Lim\",\"doi\":\"10.1142/s1793525322500029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish enhanced bounds on Cheeger–Gromov [Formula: see text]-invariants for general 3-manifolds and yet stronger bounds for special classes of 3-manifold. As key ingredients, we construct chain null-homotopies whose complexity is linearly bounded by its boundary. This result can be regarded as an algebraic topological analogue of Gromov’s conjecture for quantitative topology. The author hopes for applications to various fields including the smooth knot concordance group, quantitative topology and complexity theory.\",\"PeriodicalId\":49151,\"journal\":{\"name\":\"Journal of Topology and Analysis\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793525322500029\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525322500029","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Enhanced Bounds for rho-invariants for both general and spherical 3-manifolds
We establish enhanced bounds on Cheeger–Gromov [Formula: see text]-invariants for general 3-manifolds and yet stronger bounds for special classes of 3-manifold. As key ingredients, we construct chain null-homotopies whose complexity is linearly bounded by its boundary. This result can be regarded as an algebraic topological analogue of Gromov’s conjecture for quantitative topology. The author hopes for applications to various fields including the smooth knot concordance group, quantitative topology and complexity theory.
期刊介绍:
This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.