Hao Yan, Nurrettin Dorukhan Sergin, William A. Brenneman, Steve J. Lange, Shan Ba
{"title":"面向多阶段制造系统质量预测的深度多阶段多任务学习","authors":"Hao Yan, Nurrettin Dorukhan Sergin, William A. Brenneman, Steve J. Lange, Shan Ba","doi":"10.1080/00224065.2021.1903822","DOIUrl":null,"url":null,"abstract":"Abstract In multistage manufacturing systems, modeling multiple quality indices based on the process sensing variables is important. However, the classic modeling technique predicts each quality variable one at a time, which fails to consider the correlation within or between stages. We propose a deep multistage multi-task learning framework to jointly predict all output sensing variables in a unified end-to-end learning framework according to the sequential system architecture in the MMS. Our numerical studies and real case study have shown that the new model has a superior performance compared to many benchmark methods as well as great interpretability through developed variable selection techniques.","PeriodicalId":54769,"journal":{"name":"Journal of Quality Technology","volume":"1 1","pages":"526 - 544"},"PeriodicalIF":2.6000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Deep multistage multi-task learning for quality prediction of multistage manufacturing systems\",\"authors\":\"Hao Yan, Nurrettin Dorukhan Sergin, William A. Brenneman, Steve J. Lange, Shan Ba\",\"doi\":\"10.1080/00224065.2021.1903822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In multistage manufacturing systems, modeling multiple quality indices based on the process sensing variables is important. However, the classic modeling technique predicts each quality variable one at a time, which fails to consider the correlation within or between stages. We propose a deep multistage multi-task learning framework to jointly predict all output sensing variables in a unified end-to-end learning framework according to the sequential system architecture in the MMS. Our numerical studies and real case study have shown that the new model has a superior performance compared to many benchmark methods as well as great interpretability through developed variable selection techniques.\",\"PeriodicalId\":54769,\"journal\":{\"name\":\"Journal of Quality Technology\",\"volume\":\"1 1\",\"pages\":\"526 - 544\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quality Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00224065.2021.1903822\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00224065.2021.1903822","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Deep multistage multi-task learning for quality prediction of multistage manufacturing systems
Abstract In multistage manufacturing systems, modeling multiple quality indices based on the process sensing variables is important. However, the classic modeling technique predicts each quality variable one at a time, which fails to consider the correlation within or between stages. We propose a deep multistage multi-task learning framework to jointly predict all output sensing variables in a unified end-to-end learning framework according to the sequential system architecture in the MMS. Our numerical studies and real case study have shown that the new model has a superior performance compared to many benchmark methods as well as great interpretability through developed variable selection techniques.
期刊介绍:
The objective of Journal of Quality Technology is to contribute to the technical advancement of the field of quality technology by publishing papers that emphasize the practical applicability of new techniques, instructive examples of the operation of existing techniques and results of historical researches. Expository, review, and tutorial papers are also acceptable if they are written in a style suitable for practicing engineers.
Sample our Mathematics & Statistics journals, sign in here to start your FREE access for 14 days