{"title":"单位磁盘III上的subbergman Hilbert空间","authors":"S. Luo, Kehe Zhu","doi":"10.4153/s0008414x23000494","DOIUrl":null,"url":null,"abstract":"For a bounded analytic function $\\varphi$ on the unit disk $\\D$ with $\\|\\varphi\\|_\\infty\\le1$ we consider the defect operators $D_\\varphi$ and $D_{\\overline\\varphi}$ of the Toeplitz operators $T_\\varphi$ and $T_{\\overline\\varphi}$, respectively, on the weighted Bergman space $A^2_\\alpha$. The ranges of $D_\\varphi$ and $D_{\\overline\\varphi}$, written as $H(\\varphi)$ and $H(\\overline\\varphi)$ and equipped with appropriate inner products, are called sub-Bergman spaces. We prove the following three results in the paper: for $-1<\\alpha\\le0$ the space $H(\\varphi)$ has a complete Nevanlinna-Pick kernel if and only if $\\varphi$ is a M\\\"{o}bius map; for $\\alpha>-1$ we have $H(\\varphi)=H(\\overline\\varphi)=A^2_{\\alpha-1}$ if and only if the defect operators $D_\\varphi$ and $D_{\\overline\\varphi}$ are compact; and for $\\alpha>-1$ we have $D^2_\\varphi(A^2_\\alpha)= D^2_{\\overline\\varphi}(A^2_\\alpha)=A^2_{\\alpha-2}$ if and only if $\\varphi$ is a finite Blaschke product. In some sense our restrictions on $\\alpha$ here are best possible.","PeriodicalId":55284,"journal":{"name":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Sub-Bergman Hilbert spaces on the unit disk III\",\"authors\":\"S. Luo, Kehe Zhu\",\"doi\":\"10.4153/s0008414x23000494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a bounded analytic function $\\\\varphi$ on the unit disk $\\\\D$ with $\\\\|\\\\varphi\\\\|_\\\\infty\\\\le1$ we consider the defect operators $D_\\\\varphi$ and $D_{\\\\overline\\\\varphi}$ of the Toeplitz operators $T_\\\\varphi$ and $T_{\\\\overline\\\\varphi}$, respectively, on the weighted Bergman space $A^2_\\\\alpha$. The ranges of $D_\\\\varphi$ and $D_{\\\\overline\\\\varphi}$, written as $H(\\\\varphi)$ and $H(\\\\overline\\\\varphi)$ and equipped with appropriate inner products, are called sub-Bergman spaces. We prove the following three results in the paper: for $-1<\\\\alpha\\\\le0$ the space $H(\\\\varphi)$ has a complete Nevanlinna-Pick kernel if and only if $\\\\varphi$ is a M\\\\\\\"{o}bius map; for $\\\\alpha>-1$ we have $H(\\\\varphi)=H(\\\\overline\\\\varphi)=A^2_{\\\\alpha-1}$ if and only if the defect operators $D_\\\\varphi$ and $D_{\\\\overline\\\\varphi}$ are compact; and for $\\\\alpha>-1$ we have $D^2_\\\\varphi(A^2_\\\\alpha)= D^2_{\\\\overline\\\\varphi}(A^2_\\\\alpha)=A^2_{\\\\alpha-2}$ if and only if $\\\\varphi$ is a finite Blaschke product. In some sense our restrictions on $\\\\alpha$ here are best possible.\",\"PeriodicalId\":55284,\"journal\":{\"name\":\"Canadian Journal of Mathematics-Journal Canadien De Mathematiques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics-Journal Canadien De Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x23000494\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/s0008414x23000494","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
For a bounded analytic function $\varphi$ on the unit disk $\D$ with $\|\varphi\|_\infty\le1$ we consider the defect operators $D_\varphi$ and $D_{\overline\varphi}$ of the Toeplitz operators $T_\varphi$ and $T_{\overline\varphi}$, respectively, on the weighted Bergman space $A^2_\alpha$. The ranges of $D_\varphi$ and $D_{\overline\varphi}$, written as $H(\varphi)$ and $H(\overline\varphi)$ and equipped with appropriate inner products, are called sub-Bergman spaces. We prove the following three results in the paper: for $-1<\alpha\le0$ the space $H(\varphi)$ has a complete Nevanlinna-Pick kernel if and only if $\varphi$ is a M\"{o}bius map; for $\alpha>-1$ we have $H(\varphi)=H(\overline\varphi)=A^2_{\alpha-1}$ if and only if the defect operators $D_\varphi$ and $D_{\overline\varphi}$ are compact; and for $\alpha>-1$ we have $D^2_\varphi(A^2_\alpha)= D^2_{\overline\varphi}(A^2_\alpha)=A^2_{\alpha-2}$ if and only if $\varphi$ is a finite Blaschke product. In some sense our restrictions on $\alpha$ here are best possible.
期刊介绍:
The Canadian Journal of Mathematics (CJM) publishes original, high-quality research papers in all branches of mathematics. The Journal is a flagship publication of the Canadian Mathematical Society and has been published continuously since 1949. New research papers are published continuously online and collated into print issues six times each year.
To be submitted to the Journal, papers should be at least 18 pages long and may be written in English or in French. Shorter papers should be submitted to the Canadian Mathematical Bulletin.
Le Journal canadien de mathématiques (JCM) publie des articles de recherche innovants de grande qualité dans toutes les branches des mathématiques. Publication phare de la Société mathématique du Canada, il est publié en continu depuis 1949. En ligne, la revue propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés six fois par année.
Les textes présentés au JCM doivent compter au moins 18 pages et être rédigés en anglais ou en français. C’est le Bulletin canadien de mathématiques qui reçoit les articles plus courts.