商品市场中的套期保值策略——虚拟电厂的滚动内在和增量套期保值

Q3 Mathematics
Richard Biegler-König
{"title":"商品市场中的套期保值策略——虚拟电厂的滚动内在和增量套期保值","authors":"Richard Biegler-König","doi":"10.1080/1350486X.2021.1898998","DOIUrl":null,"url":null,"abstract":"ABSTRACT Hedging on commodity markets is usually done by applying either the rolling intrinsic strategy or the canonical delta hedge strategy. In this paper we introduce, compare and discuss both hedging strategies in the context of virtual power plants (VPP). We formulate the precise relationship of the two strategies mathematically. Our main result is that they are not only very similar regarding hedge construction but also that both strategies are equal in expectation. The proof involves some stochastic calculus and the Brownian local time. We illustrate our findings with simulated data as well as in prototypical market scenarios. These studies show that the rolling intrinsic hedge comes with a riskier profile than the delta hedge.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hedging Strategies in Commodity Markets – Rolling Intrinsic and Delta Hedging for Virtual Power Plants\",\"authors\":\"Richard Biegler-König\",\"doi\":\"10.1080/1350486X.2021.1898998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Hedging on commodity markets is usually done by applying either the rolling intrinsic strategy or the canonical delta hedge strategy. In this paper we introduce, compare and discuss both hedging strategies in the context of virtual power plants (VPP). We formulate the precise relationship of the two strategies mathematically. Our main result is that they are not only very similar regarding hedge construction but also that both strategies are equal in expectation. The proof involves some stochastic calculus and the Brownian local time. We illustrate our findings with simulated data as well as in prototypical market scenarios. These studies show that the rolling intrinsic hedge comes with a riskier profile than the delta hedge.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486X.2021.1898998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2021.1898998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

商品市场的套期保值通常采用滚动内在策略或典型增量套期保值策略。本文在虚拟电厂(VPP)的背景下,对这两种对冲策略进行了介绍、比较和讨论。我们用数学公式精确地表述了这两种策略之间的关系。我们的主要结果是,它们不仅在对冲构建方面非常相似,而且两种策略的预期也是相等的。这个证明涉及到一些随机微积分和布朗当地时间。我们用模拟数据和典型市场情景来说明我们的发现。这些研究表明,滚动内在套期保值比delta套期保值具有更大的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hedging Strategies in Commodity Markets – Rolling Intrinsic and Delta Hedging for Virtual Power Plants
ABSTRACT Hedging on commodity markets is usually done by applying either the rolling intrinsic strategy or the canonical delta hedge strategy. In this paper we introduce, compare and discuss both hedging strategies in the context of virtual power plants (VPP). We formulate the precise relationship of the two strategies mathematically. Our main result is that they are not only very similar regarding hedge construction but also that both strategies are equal in expectation. The proof involves some stochastic calculus and the Brownian local time. We illustrate our findings with simulated data as well as in prototypical market scenarios. These studies show that the rolling intrinsic hedge comes with a riskier profile than the delta hedge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信