N. Mignocchi, Sarah Krüssel, Kanghoon Jung, Dongmin Lee, Hyung-Bae Kwon
{"title":"基因编码催产素传感器的研制","authors":"N. Mignocchi, Sarah Krüssel, Kanghoon Jung, Dongmin Lee, Hyung-Bae Kwon","doi":"10.1101/2020.07.14.202598","DOIUrl":null,"url":null,"abstract":"Oxytocin (OXT) is a neuropeptide originating in the paraventricular nucleus (PVN) of the hypothalamus, with a role in influencing various social behaviors. However, pinpointing its actions only during the time animals are performing specific behaviors has been difficult to study. Here we developed an optogenetic gene expression system designed to selectively label neuronal populations activated by OXT in the presence of blue-light, named “OXTR-iTango2”. The OXTR-iTango2 was capable of inducing gene expression of a reporter gene in both human embryonic kidney (HEK) cells and neurons in a quantitative manner. In vivo expression of OXTR-iTango2 selectively labeled OXT-sensitive neurons in a blue-light dependent manner. Furthermore, we were able to detect a subset of dopamine (DA) neurons in the ventral tegmental area (VTA) that receive OXT activation during social interaction. Thus, we provide a genetically-encoded, scalable optogenetic toolset to target neural circuits activated by OXT in behaving animals with a high temporal resolution.","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Development of a genetically-encoded oxytocin sensor\",\"authors\":\"N. Mignocchi, Sarah Krüssel, Kanghoon Jung, Dongmin Lee, Hyung-Bae Kwon\",\"doi\":\"10.1101/2020.07.14.202598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oxytocin (OXT) is a neuropeptide originating in the paraventricular nucleus (PVN) of the hypothalamus, with a role in influencing various social behaviors. However, pinpointing its actions only during the time animals are performing specific behaviors has been difficult to study. Here we developed an optogenetic gene expression system designed to selectively label neuronal populations activated by OXT in the presence of blue-light, named “OXTR-iTango2”. The OXTR-iTango2 was capable of inducing gene expression of a reporter gene in both human embryonic kidney (HEK) cells and neurons in a quantitative manner. In vivo expression of OXTR-iTango2 selectively labeled OXT-sensitive neurons in a blue-light dependent manner. Furthermore, we were able to detect a subset of dopamine (DA) neurons in the ventral tegmental area (VTA) that receive OXT activation during social interaction. Thus, we provide a genetically-encoded, scalable optogenetic toolset to target neural circuits activated by OXT in behaving animals with a high temporal resolution.\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2020.07.14.202598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2020.07.14.202598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a genetically-encoded oxytocin sensor
Oxytocin (OXT) is a neuropeptide originating in the paraventricular nucleus (PVN) of the hypothalamus, with a role in influencing various social behaviors. However, pinpointing its actions only during the time animals are performing specific behaviors has been difficult to study. Here we developed an optogenetic gene expression system designed to selectively label neuronal populations activated by OXT in the presence of blue-light, named “OXTR-iTango2”. The OXTR-iTango2 was capable of inducing gene expression of a reporter gene in both human embryonic kidney (HEK) cells and neurons in a quantitative manner. In vivo expression of OXTR-iTango2 selectively labeled OXT-sensitive neurons in a blue-light dependent manner. Furthermore, we were able to detect a subset of dopamine (DA) neurons in the ventral tegmental area (VTA) that receive OXT activation during social interaction. Thus, we provide a genetically-encoded, scalable optogenetic toolset to target neural circuits activated by OXT in behaving animals with a high temporal resolution.