黑洞是宇宙的再生系统

A. Šorli
{"title":"黑洞是宇宙的再生系统","authors":"A. Šorli","doi":"10.24297/jap.v17i.8620","DOIUrl":null,"url":null,"abstract":"Recent research on superfluid quantum vacuum as the physical origin of universal space has opened new perspectives in astronomy and cosmology. Every stellar object is in the active relation with space and its density diminishes according to the mass-energy equivalence principle. As per Newton’s Shell Theorem, vacuum density is minimum at the surface of the stellar objects and in their centre. The density of space on the surface of the Black holes and in their centre is so low that atoms become unstable. Therefore, they disintegrate back into the elementary particles and cosmic rays. By transforming old matter into these fresh energies, black holes are rejuvenating the universe and keeping its entropy constant.","PeriodicalId":15024,"journal":{"name":"Journal of Advances in Physics","volume":"76 1","pages":"23-31"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Black Holes are Rejuvenating Systems of the Universe\",\"authors\":\"A. Šorli\",\"doi\":\"10.24297/jap.v17i.8620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research on superfluid quantum vacuum as the physical origin of universal space has opened new perspectives in astronomy and cosmology. Every stellar object is in the active relation with space and its density diminishes according to the mass-energy equivalence principle. As per Newton’s Shell Theorem, vacuum density is minimum at the surface of the stellar objects and in their centre. The density of space on the surface of the Black holes and in their centre is so low that atoms become unstable. Therefore, they disintegrate back into the elementary particles and cosmic rays. By transforming old matter into these fresh energies, black holes are rejuvenating the universe and keeping its entropy constant.\",\"PeriodicalId\":15024,\"journal\":{\"name\":\"Journal of Advances in Physics\",\"volume\":\"76 1\",\"pages\":\"23-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24297/jap.v17i.8620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24297/jap.v17i.8620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来关于超流体量子真空作为宇宙空间物理起源的研究为天文学和宇宙学开辟了新的前景。每一个恒星物体都与空间处于主动关系,其密度根据质能等效原理递减。根据牛顿的壳层定理,星体表面和中心的真空密度最小。黑洞表面和中心的空间密度非常低,以至于原子变得不稳定。因此,它们分解回基本粒子和宇宙射线。通过将旧物质转化为这些新能量,黑洞正在使宇宙恢复活力并保持其熵不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Black Holes are Rejuvenating Systems of the Universe
Recent research on superfluid quantum vacuum as the physical origin of universal space has opened new perspectives in astronomy and cosmology. Every stellar object is in the active relation with space and its density diminishes according to the mass-energy equivalence principle. As per Newton’s Shell Theorem, vacuum density is minimum at the surface of the stellar objects and in their centre. The density of space on the surface of the Black holes and in their centre is so low that atoms become unstable. Therefore, they disintegrate back into the elementary particles and cosmic rays. By transforming old matter into these fresh energies, black holes are rejuvenating the universe and keeping its entropy constant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信