用于信息保障的基于意义的机器学习

Courtney Falk, Lauren Stuart
{"title":"用于信息保障的基于意义的机器学习","authors":"Courtney Falk,&nbsp;Lauren Stuart","doi":"10.1016/j.jides.2016.10.007","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents meaning-based machine learning, the use of semantically meaningful input data into machine learning systems in order to produce output that is meaningful to a human user where the semantic input comes from the Ontological Semantics Technology theory of natural language processing. How to bridge from knowledge-based natural language processing architectures to traditional machine learning systems is described to include high-level descriptions of the steps taken. These meaning-based machine learning systems are then applied to problems in information assurance and security that remain unsolved and feature large amounts of natural language text.</p></div>","PeriodicalId":100792,"journal":{"name":"Journal of Innovation in Digital Ecosystems","volume":"3 2","pages":"Pages 141-147"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jides.2016.10.007","citationCount":"2","resultStr":"{\"title\":\"Meaning-based machine learning for information assurance\",\"authors\":\"Courtney Falk,&nbsp;Lauren Stuart\",\"doi\":\"10.1016/j.jides.2016.10.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents meaning-based machine learning, the use of semantically meaningful input data into machine learning systems in order to produce output that is meaningful to a human user where the semantic input comes from the Ontological Semantics Technology theory of natural language processing. How to bridge from knowledge-based natural language processing architectures to traditional machine learning systems is described to include high-level descriptions of the steps taken. These meaning-based machine learning systems are then applied to problems in information assurance and security that remain unsolved and feature large amounts of natural language text.</p></div>\",\"PeriodicalId\":100792,\"journal\":{\"name\":\"Journal of Innovation in Digital Ecosystems\",\"volume\":\"3 2\",\"pages\":\"Pages 141-147\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jides.2016.10.007\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Innovation in Digital Ecosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352664516300207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovation in Digital Ecosystems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352664516300207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了基于意义的机器学习,将语义上有意义的输入数据使用到机器学习系统中,以便产生对人类用户有意义的输出,其中语义输入来自自然语言处理的本体语义技术理论。描述了如何从基于知识的自然语言处理体系结构过渡到传统的机器学习系统,包括对所采取步骤的高级描述。然后,这些基于意义的机器学习系统被应用于信息保障和安全方面尚未解决的问题,并以大量自然语言文本为特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meaning-based machine learning for information assurance

This paper presents meaning-based machine learning, the use of semantically meaningful input data into machine learning systems in order to produce output that is meaningful to a human user where the semantic input comes from the Ontological Semantics Technology theory of natural language processing. How to bridge from knowledge-based natural language processing architectures to traditional machine learning systems is described to include high-level descriptions of the steps taken. These meaning-based machine learning systems are then applied to problems in information assurance and security that remain unsolved and feature large amounts of natural language text.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信