{"title":"纯三次数域中特殊阶的约化理想","authors":"A. Azizi, Jamal Benamara, M. C. Ismaili, M. Talbi","doi":"10.5817/am2020-3-171","DOIUrl":null,"url":null,"abstract":"Let $K=\\mathbb{Q}(\\theta )$ be a pure cubic field, with $\\theta ^3=D$, where $D$ is a cube-free integer. We will determine the reduced ideals of the order $\\mathcal{O}=\\mathbb{Z}[\\theta ]$ of $K$ which coincides with the maximal order of $K$ in the case where $D$ is square-free and $\\not\\equiv\\pm1\\pmod9$.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"38 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The reduced ideals of a special order in a pure cubic number field\",\"authors\":\"A. Azizi, Jamal Benamara, M. C. Ismaili, M. Talbi\",\"doi\":\"10.5817/am2020-3-171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $K=\\\\mathbb{Q}(\\\\theta )$ be a pure cubic field, with $\\\\theta ^3=D$, where $D$ is a cube-free integer. We will determine the reduced ideals of the order $\\\\mathcal{O}=\\\\mathbb{Z}[\\\\theta ]$ of $K$ which coincides with the maximal order of $K$ in the case where $D$ is square-free and $\\\\not\\\\equiv\\\\pm1\\\\pmod9$.\",\"PeriodicalId\":45191,\"journal\":{\"name\":\"Archivum Mathematicum\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum Mathematicum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5817/am2020-3-171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2020-3-171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The reduced ideals of a special order in a pure cubic number field
Let $K=\mathbb{Q}(\theta )$ be a pure cubic field, with $\theta ^3=D$, where $D$ is a cube-free integer. We will determine the reduced ideals of the order $\mathcal{O}=\mathbb{Z}[\theta ]$ of $K$ which coincides with the maximal order of $K$ in the case where $D$ is square-free and $\not\equiv\pm1\pmod9$.
期刊介绍:
Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.