T. Sawaguchi, I. Nikulin, K. Ogawa, S. Takamori, Fumiyoshi Yoshinaka, Yuya Chiba, H. Otsuka, Yasuhiko Inoue, A. Kushibe
{"title":"Fe - 15Mn - 10Cr - 8Ni - 4Si抗震阻尼合金在不同温度下的低周疲劳寿命及塑性机理","authors":"T. Sawaguchi, I. Nikulin, K. Ogawa, S. Takamori, Fumiyoshi Yoshinaka, Yuya Chiba, H. Otsuka, Yasuhiko Inoue, A. Kushibe","doi":"10.2139/ssrn.3746794","DOIUrl":null,"url":null,"abstract":"A recently developed Fe−15Mn−10Cr−8Ni−4Si (FMS) seismic damping alloy has a superior fatigue life at room temperature due to reversible dislocation motion associated with the γ → e martensitic transformation. The effect of temperature on the low-cycle fatigue life (N f) and the associated plasticity mechanisms of the FMS alloy were evaluated between 253 and 393 K. The longest (N f of 15,644 was obtained at 313 K. The (N f was dependent on the plasticity mechanisms, which were subdivided into three temperature regions with respect to the upper temperature limits for stress-assisted and strain-induced martensitic transformation (Msσ and Mdσ, respectively). At temperatures below Msσ, the Nf exceeded 5,000 cycles, where e-martensite was dominant and a long period stacking ordered structure was formed. The longest Nf values of over 10,000 cycles were obtained in the dual γ/e-phase formed between Mdσ and Mdσ, while Nf decreased rapidly as the deformation temperature increased beyond Mdσ. The effect of temperature on the N f of the FMS alloy was comparable to that of Fe–28Mn–6Si–5Cr shape memory alloy, and to the chemical composition dependence of N f of Fe–30Mn–(6 – x)Si–x Al (x= 0-6) transformation- and twinning-induced plasticity (TRIP/TWIP) steels. A new set of thermodynamic parameters was established to calculate the Gibbs free energy difference between the phases (ΔGγ→e) and the stacking fault energy of austenite (ΓSFE). The superior N f was associated with the cyclic strain-induced martensitic transformation when ΔGγ→e was between –50 and 100 Jmol-1, while reversible martensitic transformation relied on a ΔGγ→e of ~0 Jmol-1.","PeriodicalId":7755,"journal":{"name":"AMI: Acta Materialia","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Low-Cycle Fatigue Life and Plasticity Mechanisms of a Fe−15Mn−10Cr−8Ni−4Si Seismic Damping Alloy Under Cyclic Loading at Various Temperatures\",\"authors\":\"T. Sawaguchi, I. Nikulin, K. Ogawa, S. Takamori, Fumiyoshi Yoshinaka, Yuya Chiba, H. Otsuka, Yasuhiko Inoue, A. Kushibe\",\"doi\":\"10.2139/ssrn.3746794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recently developed Fe−15Mn−10Cr−8Ni−4Si (FMS) seismic damping alloy has a superior fatigue life at room temperature due to reversible dislocation motion associated with the γ → e martensitic transformation. The effect of temperature on the low-cycle fatigue life (N f) and the associated plasticity mechanisms of the FMS alloy were evaluated between 253 and 393 K. The longest (N f of 15,644 was obtained at 313 K. The (N f was dependent on the plasticity mechanisms, which were subdivided into three temperature regions with respect to the upper temperature limits for stress-assisted and strain-induced martensitic transformation (Msσ and Mdσ, respectively). At temperatures below Msσ, the Nf exceeded 5,000 cycles, where e-martensite was dominant and a long period stacking ordered structure was formed. The longest Nf values of over 10,000 cycles were obtained in the dual γ/e-phase formed between Mdσ and Mdσ, while Nf decreased rapidly as the deformation temperature increased beyond Mdσ. The effect of temperature on the N f of the FMS alloy was comparable to that of Fe–28Mn–6Si–5Cr shape memory alloy, and to the chemical composition dependence of N f of Fe–30Mn–(6 – x)Si–x Al (x= 0-6) transformation- and twinning-induced plasticity (TRIP/TWIP) steels. A new set of thermodynamic parameters was established to calculate the Gibbs free energy difference between the phases (ΔGγ→e) and the stacking fault energy of austenite (ΓSFE). The superior N f was associated with the cyclic strain-induced martensitic transformation when ΔGγ→e was between –50 and 100 Jmol-1, while reversible martensitic transformation relied on a ΔGγ→e of ~0 Jmol-1.\",\"PeriodicalId\":7755,\"journal\":{\"name\":\"AMI: Acta Materialia\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMI: Acta Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3746794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMI: Acta Materialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3746794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-Cycle Fatigue Life and Plasticity Mechanisms of a Fe−15Mn−10Cr−8Ni−4Si Seismic Damping Alloy Under Cyclic Loading at Various Temperatures
A recently developed Fe−15Mn−10Cr−8Ni−4Si (FMS) seismic damping alloy has a superior fatigue life at room temperature due to reversible dislocation motion associated with the γ → e martensitic transformation. The effect of temperature on the low-cycle fatigue life (N f) and the associated plasticity mechanisms of the FMS alloy were evaluated between 253 and 393 K. The longest (N f of 15,644 was obtained at 313 K. The (N f was dependent on the plasticity mechanisms, which were subdivided into three temperature regions with respect to the upper temperature limits for stress-assisted and strain-induced martensitic transformation (Msσ and Mdσ, respectively). At temperatures below Msσ, the Nf exceeded 5,000 cycles, where e-martensite was dominant and a long period stacking ordered structure was formed. The longest Nf values of over 10,000 cycles were obtained in the dual γ/e-phase formed between Mdσ and Mdσ, while Nf decreased rapidly as the deformation temperature increased beyond Mdσ. The effect of temperature on the N f of the FMS alloy was comparable to that of Fe–28Mn–6Si–5Cr shape memory alloy, and to the chemical composition dependence of N f of Fe–30Mn–(6 – x)Si–x Al (x= 0-6) transformation- and twinning-induced plasticity (TRIP/TWIP) steels. A new set of thermodynamic parameters was established to calculate the Gibbs free energy difference between the phases (ΔGγ→e) and the stacking fault energy of austenite (ΓSFE). The superior N f was associated with the cyclic strain-induced martensitic transformation when ΔGγ→e was between –50 and 100 Jmol-1, while reversible martensitic transformation relied on a ΔGγ→e of ~0 Jmol-1.