回归模型分布假设拟合优度的平滑检验

Pub Date : 2022-04-18 DOI:10.1111/anzs.12361
J. C. W. Rayner, Paul Rippon, Thomas Suesse, Olivier Thas
{"title":"回归模型分布假设拟合优度的平滑检验","authors":"J. C. W. Rayner,&nbsp;Paul Rippon,&nbsp;Thomas Suesse,&nbsp;Olivier Thas","doi":"10.1111/anzs.12361","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We focus on regression models that consist of (i) a model for the conditional mean of the outcome and (ii) a distributional assumption about the distribution of the outcome, both conditional on the regressors. Generalised linear models form a well-known example. The choice of the outcome distribution is often motivated by prior or background knowledge of the researcher, or it is simply chosen for convenience. We propose smooth goodness of fit tests for testing the distributional assumption in regression models. The tests arise from embedding the regression model in a smooth family of alternatives, and constructing appropriate score tests that correctly account for nuisance parameter estimation. The tests are customised, focussed and comprehensive. We present several examples to illustrate the wide applicability of our method. A small simulation study demonstrates that our tests have power to detect important deviations from the hypothesised model.</p>\n </div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Smooth tests of goodness of fit for the distributional assumption of regression models\",\"authors\":\"J. C. W. Rayner,&nbsp;Paul Rippon,&nbsp;Thomas Suesse,&nbsp;Olivier Thas\",\"doi\":\"10.1111/anzs.12361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We focus on regression models that consist of (i) a model for the conditional mean of the outcome and (ii) a distributional assumption about the distribution of the outcome, both conditional on the regressors. Generalised linear models form a well-known example. The choice of the outcome distribution is often motivated by prior or background knowledge of the researcher, or it is simply chosen for convenience. We propose smooth goodness of fit tests for testing the distributional assumption in regression models. The tests arise from embedding the regression model in a smooth family of alternatives, and constructing appropriate score tests that correctly account for nuisance parameter estimation. The tests are customised, focussed and comprehensive. We present several examples to illustrate the wide applicability of our method. A small simulation study demonstrates that our tests have power to detect important deviations from the hypothesised model.</p>\\n </div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们关注的回归模型由(i)结果的条件均值模型和(ii)结果分布的分布假设组成,两者都以回归量为条件。广义线性模型就是一个众所周知的例子。结果分布的选择通常是由研究人员的先验或背景知识驱动的,或者只是为了方便而选择。我们提出了平滑拟合优度检验来检验回归模型中的分布假设。测试产生于将回归模型嵌入到平滑的备选方案家族中,并构建正确考虑干扰参数估计的适当分数测试。这些测试是定制的、重点突出的、全面的。我们举几个例子来说明我们的方法的广泛适用性。一项小型模拟研究表明,我们的测试有能力检测出与假设模型的重要偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Smooth tests of goodness of fit for the distributional assumption of regression models

We focus on regression models that consist of (i) a model for the conditional mean of the outcome and (ii) a distributional assumption about the distribution of the outcome, both conditional on the regressors. Generalised linear models form a well-known example. The choice of the outcome distribution is often motivated by prior or background knowledge of the researcher, or it is simply chosen for convenience. We propose smooth goodness of fit tests for testing the distributional assumption in regression models. The tests arise from embedding the regression model in a smooth family of alternatives, and constructing appropriate score tests that correctly account for nuisance parameter estimation. The tests are customised, focussed and comprehensive. We present several examples to illustrate the wide applicability of our method. A small simulation study demonstrates that our tests have power to detect important deviations from the hypothesised model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信