基于员工声音和区域数据的语音聚类改进

Tetsuya Kawase, Masanori Takehara, S. Tamura, S. Hayamizu, Ryuhei Tenmoku, T. Kurata
{"title":"基于员工声音和区域数据的语音聚类改进","authors":"Tetsuya Kawase, Masanori Takehara, S. Tamura, S. Hayamizu, Ryuhei Tenmoku, T. Kurata","doi":"10.1109/ICASSP.2014.6854160","DOIUrl":null,"url":null,"abstract":"In this paper, we propose to use staying area data toward the estimation of serving time for customers. To classify utterances enables us to estimate conversation types between speakers. However, its performance becomes lower in real environments. We propose a method using area data with sound data to solve this problem. We also propose a method to estimate the conversation types using the decision trees. They were tested with the data recorded in a Japanese restaurant. In the experiment to classify utterances, the proposed method performed better than the method using only sound data. In the experiment to estimate the conversation types, we succeeded to recover 70% of the mis-classified conversations using both of sound and area data.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"28 1","pages":"3047-3051"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improvement of utterance clustering by using employees' sound and area data\",\"authors\":\"Tetsuya Kawase, Masanori Takehara, S. Tamura, S. Hayamizu, Ryuhei Tenmoku, T. Kurata\",\"doi\":\"10.1109/ICASSP.2014.6854160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose to use staying area data toward the estimation of serving time for customers. To classify utterances enables us to estimate conversation types between speakers. However, its performance becomes lower in real environments. We propose a method using area data with sound data to solve this problem. We also propose a method to estimate the conversation types using the decision trees. They were tested with the data recorded in a Japanese restaurant. In the experiment to classify utterances, the proposed method performed better than the method using only sound data. In the experiment to estimate the conversation types, we succeeded to recover 70% of the mis-classified conversations using both of sound and area data.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"28 1\",\"pages\":\"3047-3051\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6854160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们建议使用停留面积数据来估计顾客的服务时间。对话语进行分类使我们能够估计说话者之间的对话类型。然而,它的性能在实际环境中变得较低。我们提出了一种利用区域数据与声音数据相结合的方法来解决这一问题。我们还提出了一种使用决策树来估计会话类型的方法。他们用一家日本餐馆记录的数据进行了测试。在对语音进行分类的实验中,该方法的分类效果优于仅使用语音数据的方法。在估计会话类型的实验中,我们成功地利用声音和区域数据恢复了70%的错误分类会话。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement of utterance clustering by using employees' sound and area data
In this paper, we propose to use staying area data toward the estimation of serving time for customers. To classify utterances enables us to estimate conversation types between speakers. However, its performance becomes lower in real environments. We propose a method using area data with sound data to solve this problem. We also propose a method to estimate the conversation types using the decision trees. They were tested with the data recorded in a Japanese restaurant. In the experiment to classify utterances, the proposed method performed better than the method using only sound data. In the experiment to estimate the conversation types, we succeeded to recover 70% of the mis-classified conversations using both of sound and area data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信