{"title":"基于手指姿态识别的智能轮椅控制系统","authors":"Iswahyudi, K. Anam, Azmi Saleh","doi":"10.23919/EECSI50503.2020.9251907","DOIUrl":null,"url":null,"abstract":"In the old day, wheelchairs are moved manually by using hand or with the assistance of someone else. Users of this wheelchair get tired quickly if they have to walk long distances. The electric wheelchair emerged as a form of innovation and development for the manual wheelchair. This paper presented the control system of the electric wheelchair based on finger poses using the Convolutional Neural Network (CNN). The camera is used to take pictures of five-finger poses. Images are selected only in certain sections using Region of Interest (ROI). The five-finger poses represent the movement of the electric wheelchair to stop, right, left, forward, and backward. The experimental results indicated that the accuracy of the finger pose detection is about 93.6%. Therefore, the control system using CNN can be a potential solution for an electric wheelchair.","PeriodicalId":6743,"journal":{"name":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","volume":"33 1","pages":"257-261"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Intelligent Wheelchair Control System Based on Finger Pose Recognition\",\"authors\":\"Iswahyudi, K. Anam, Azmi Saleh\",\"doi\":\"10.23919/EECSI50503.2020.9251907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the old day, wheelchairs are moved manually by using hand or with the assistance of someone else. Users of this wheelchair get tired quickly if they have to walk long distances. The electric wheelchair emerged as a form of innovation and development for the manual wheelchair. This paper presented the control system of the electric wheelchair based on finger poses using the Convolutional Neural Network (CNN). The camera is used to take pictures of five-finger poses. Images are selected only in certain sections using Region of Interest (ROI). The five-finger poses represent the movement of the electric wheelchair to stop, right, left, forward, and backward. The experimental results indicated that the accuracy of the finger pose detection is about 93.6%. Therefore, the control system using CNN can be a potential solution for an electric wheelchair.\",\"PeriodicalId\":6743,\"journal\":{\"name\":\"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)\",\"volume\":\"33 1\",\"pages\":\"257-261\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EECSI50503.2020.9251907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EECSI50503.2020.9251907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intelligent Wheelchair Control System Based on Finger Pose Recognition
In the old day, wheelchairs are moved manually by using hand or with the assistance of someone else. Users of this wheelchair get tired quickly if they have to walk long distances. The electric wheelchair emerged as a form of innovation and development for the manual wheelchair. This paper presented the control system of the electric wheelchair based on finger poses using the Convolutional Neural Network (CNN). The camera is used to take pictures of five-finger poses. Images are selected only in certain sections using Region of Interest (ROI). The five-finger poses represent the movement of the electric wheelchair to stop, right, left, forward, and backward. The experimental results indicated that the accuracy of the finger pose detection is about 93.6%. Therefore, the control system using CNN can be a potential solution for an electric wheelchair.