交互-圆脸和一致性-圆脸-圆心立方体

A. P. Kels
{"title":"交互-圆脸和一致性-圆脸-圆心立方体","authors":"A. P. Kels","doi":"10.1063/5.0024630","DOIUrl":null,"url":null,"abstract":"There is a correspondence between integrable lattice models of statistical mechanics and discrete integrable equations which satisfy multidimensional consistency, where the latter may be found in a quasi-classical expansion of the former. This paper extends this correspondence to interaction-round-a-face (IRF) models, resulting in a new formulation of the consistency-around-a-cube (CAC) integrability condition that is applicable to five-point equations which are defined on a vertex and its four nearest-neighbours in the square lattice. Multidimensional consistency for these equations is formulated as consistency-around-a-face-centered-cube (CAFCC), which namely involves satisfying an overdetermined system of fourteen five-point lattice equations for eight unknown variables on the face-centered cubic unit cell. From the quasi-classical limit of IRF models, which are constructed from the continuous spin solutions of the star-triangle relations associated to the Adler-Bobenko-Suris (ABS) list, fifteen sets of equations are obtained which satisfy CAFCC.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Interaction-round-a-face and consistency-around-a-face-centered-cube\",\"authors\":\"A. P. Kels\",\"doi\":\"10.1063/5.0024630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a correspondence between integrable lattice models of statistical mechanics and discrete integrable equations which satisfy multidimensional consistency, where the latter may be found in a quasi-classical expansion of the former. This paper extends this correspondence to interaction-round-a-face (IRF) models, resulting in a new formulation of the consistency-around-a-cube (CAC) integrability condition that is applicable to five-point equations which are defined on a vertex and its four nearest-neighbours in the square lattice. Multidimensional consistency for these equations is formulated as consistency-around-a-face-centered-cube (CAFCC), which namely involves satisfying an overdetermined system of fourteen five-point lattice equations for eight unknown variables on the face-centered cubic unit cell. From the quasi-classical limit of IRF models, which are constructed from the continuous spin solutions of the star-triangle relations associated to the Adler-Bobenko-Suris (ABS) list, fifteen sets of equations are obtained which satisfy CAFCC.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0024630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0024630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

统计力学的可积点阵模型与满足多维一致性的离散可积方程之间存在对应关系,其中后者可以在前者的准经典展开中找到。本文将这种对应关系推广到相互作用圆面(IRF)模型中,得到了一个新的关于圆面一致性(CAC)可积性条件的公式,该公式适用于定义在正方形晶格中一个顶点及其四个近邻上的五点方程。这些方程的多维一致性被表述为围绕面心立方的一致性(CAFCC),即涉及满足面心立方单元格上八个未知变量的14个五点点阵方程的超确定系统。从adler - bobenco - suris (ABS)表星三角关系的连续自旋解构造的IRF模型的准经典极限出发,得到了满足CAFCC的15组方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interaction-round-a-face and consistency-around-a-face-centered-cube
There is a correspondence between integrable lattice models of statistical mechanics and discrete integrable equations which satisfy multidimensional consistency, where the latter may be found in a quasi-classical expansion of the former. This paper extends this correspondence to interaction-round-a-face (IRF) models, resulting in a new formulation of the consistency-around-a-cube (CAC) integrability condition that is applicable to five-point equations which are defined on a vertex and its four nearest-neighbours in the square lattice. Multidimensional consistency for these equations is formulated as consistency-around-a-face-centered-cube (CAFCC), which namely involves satisfying an overdetermined system of fourteen five-point lattice equations for eight unknown variables on the face-centered cubic unit cell. From the quasi-classical limit of IRF models, which are constructed from the continuous spin solutions of the star-triangle relations associated to the Adler-Bobenko-Suris (ABS) list, fifteen sets of equations are obtained which satisfy CAFCC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信