与非cm椭圆曲线乘积相关的Frobenius迹分布的界

IF 0.6 3区 数学 Q3 MATHEMATICS
A. Cojocaru, T. Wang
{"title":"与非cm椭圆曲线乘积相关的Frobenius迹分布的界","authors":"A. Cojocaru, T. Wang","doi":"10.4153/S0008414X22000086","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$g \\geq 1$\n be an integer and let \n$A/\\mathbb Q$\n be an abelian variety that is isogenous over \n$\\mathbb Q$\n to a product of g elliptic curves defined over \n$\\mathbb Q$\n , pairwise non-isogenous over \n$\\overline {\\mathbb Q}$\n and each without complex multiplication. For an integer t and a positive real number x, denote by \n$\\pi _A(x, t)$\n the number of primes \n$p \\leq x$\n , of good reduction for A, for which the Frobenius trace \n$a_{1, p}(A)$\n associated to the reduction of A modulo p equals t. Assuming the Generalized Riemann Hypothesis for Dedekind zeta functions, we prove that \n$\\pi _A(x, 0) \\ll _A x^{1 - \\frac {1}{3 g+1 }}/(\\operatorname {log} x)^{1 - \\frac {2}{3 g+1}}$\n and \n$\\pi _A(x, t) \\ll _A x^{1 - \\frac {1}{3 g + 2}}/(\\operatorname {log} x)^{1 - \\frac {2}{3 g + 2}}$\n if \n$t \\neq 0$\n . These bounds largely improve upon recent ones obtained for \n$g = 2$\n by Chen, Jones, and Serban, and may be viewed as generalizations to arbitrary g of the bounds obtained for \n$g=1$\n by Murty, Murty, and Saradha, combined with a refinement in the power of \n$\\operatorname {log} x$\n by Zywina. Under the assumptions stated above, we also prove the existence of a density one set of primes p satisfying \n$|a_{1, p}(A)|>p^{\\frac {1}{3 g + 1} - \\varepsilon }$\n for any fixed \n$\\varepsilon>0$\n .","PeriodicalId":55284,"journal":{"name":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bounds for the distribution of the Frobenius traces associated to products of non-CM elliptic curves\",\"authors\":\"A. Cojocaru, T. Wang\",\"doi\":\"10.4153/S0008414X22000086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let \\n$g \\\\geq 1$\\n be an integer and let \\n$A/\\\\mathbb Q$\\n be an abelian variety that is isogenous over \\n$\\\\mathbb Q$\\n to a product of g elliptic curves defined over \\n$\\\\mathbb Q$\\n , pairwise non-isogenous over \\n$\\\\overline {\\\\mathbb Q}$\\n and each without complex multiplication. For an integer t and a positive real number x, denote by \\n$\\\\pi _A(x, t)$\\n the number of primes \\n$p \\\\leq x$\\n , of good reduction for A, for which the Frobenius trace \\n$a_{1, p}(A)$\\n associated to the reduction of A modulo p equals t. Assuming the Generalized Riemann Hypothesis for Dedekind zeta functions, we prove that \\n$\\\\pi _A(x, 0) \\\\ll _A x^{1 - \\\\frac {1}{3 g+1 }}/(\\\\operatorname {log} x)^{1 - \\\\frac {2}{3 g+1}}$\\n and \\n$\\\\pi _A(x, t) \\\\ll _A x^{1 - \\\\frac {1}{3 g + 2}}/(\\\\operatorname {log} x)^{1 - \\\\frac {2}{3 g + 2}}$\\n if \\n$t \\\\neq 0$\\n . These bounds largely improve upon recent ones obtained for \\n$g = 2$\\n by Chen, Jones, and Serban, and may be viewed as generalizations to arbitrary g of the bounds obtained for \\n$g=1$\\n by Murty, Murty, and Saradha, combined with a refinement in the power of \\n$\\\\operatorname {log} x$\\n by Zywina. Under the assumptions stated above, we also prove the existence of a density one set of primes p satisfying \\n$|a_{1, p}(A)|>p^{\\\\frac {1}{3 g + 1} - \\\\varepsilon }$\\n for any fixed \\n$\\\\varepsilon>0$\\n .\",\"PeriodicalId\":55284,\"journal\":{\"name\":\"Canadian Journal of Mathematics-Journal Canadien De Mathematiques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics-Journal Canadien De Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/S0008414X22000086\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008414X22000086","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

抽象Let $g \geq 1$ 是一个整数,让 $A/\mathbb Q$ 是上同质的阿贝尔变种 $\mathbb Q$ 到g条椭圆曲线的乘积 $\mathbb Q$ ,两两非均匀的除以 $\overline {\mathbb Q}$ 每个都不需要复数乘法。对于整数t和正实数x,用 $\pi _A(x, t)$ 质数的个数 $p \leq x$ 对A有很好的还原作用,这是Frobenius追踪到的 $a_{1, p}(A)$ 假设Dedekind zeta函数的广义黎曼假设,我们证明了这一点 $\pi _A(x, 0) \ll _A x^{1 - \frac {1}{3 g+1 }}/(\operatorname {log} x)^{1 - \frac {2}{3 g+1}}$ 和 $\pi _A(x, t) \ll _A x^{1 - \frac {1}{3 g + 2}}/(\operatorname {log} x)^{1 - \frac {2}{3 g + 2}}$ 如果 $t \neq 0$ . 这些界限大大改进了最近为 $g = 2$ 由Chen, Jones, and Serban提出,并且可以看作是对得到的边界的任意g的推广 $g=1$ 由Murty, Murty和Saradha,结合了一种精致的力量 $\operatorname {log} x$ 作者:Zywina在上述假设下,我们还证明了一组满足的素数p的密度的存在性 $|a_{1, p}(A)|>p^{\frac {1}{3 g + 1} - \varepsilon }$ 对于任何固定的 $\varepsilon>0$ .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds for the distribution of the Frobenius traces associated to products of non-CM elliptic curves
Abstract Let $g \geq 1$ be an integer and let $A/\mathbb Q$ be an abelian variety that is isogenous over $\mathbb Q$ to a product of g elliptic curves defined over $\mathbb Q$ , pairwise non-isogenous over $\overline {\mathbb Q}$ and each without complex multiplication. For an integer t and a positive real number x, denote by $\pi _A(x, t)$ the number of primes $p \leq x$ , of good reduction for A, for which the Frobenius trace $a_{1, p}(A)$ associated to the reduction of A modulo p equals t. Assuming the Generalized Riemann Hypothesis for Dedekind zeta functions, we prove that $\pi _A(x, 0) \ll _A x^{1 - \frac {1}{3 g+1 }}/(\operatorname {log} x)^{1 - \frac {2}{3 g+1}}$ and $\pi _A(x, t) \ll _A x^{1 - \frac {1}{3 g + 2}}/(\operatorname {log} x)^{1 - \frac {2}{3 g + 2}}$ if $t \neq 0$ . These bounds largely improve upon recent ones obtained for $g = 2$ by Chen, Jones, and Serban, and may be viewed as generalizations to arbitrary g of the bounds obtained for $g=1$ by Murty, Murty, and Saradha, combined with a refinement in the power of $\operatorname {log} x$ by Zywina. Under the assumptions stated above, we also prove the existence of a density one set of primes p satisfying $|a_{1, p}(A)|>p^{\frac {1}{3 g + 1} - \varepsilon }$ for any fixed $\varepsilon>0$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
58
审稿时长
4.5 months
期刊介绍: The Canadian Journal of Mathematics (CJM) publishes original, high-quality research papers in all branches of mathematics. The Journal is a flagship publication of the Canadian Mathematical Society and has been published continuously since 1949. New research papers are published continuously online and collated into print issues six times each year. To be submitted to the Journal, papers should be at least 18 pages long and may be written in English or in French. Shorter papers should be submitted to the Canadian Mathematical Bulletin. Le Journal canadien de mathématiques (JCM) publie des articles de recherche innovants de grande qualité dans toutes les branches des mathématiques. Publication phare de la Société mathématique du Canada, il est publié en continu depuis 1949. En ligne, la revue propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés six fois par année. Les textes présentés au JCM doivent compter au moins 18 pages et être rédigés en anglais ou en français. C’est le Bulletin canadien de mathématiques qui reçoit les articles plus courts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信