海报:预条件共轭梯度的基于数值的排序

J. Booth
{"title":"海报:预条件共轭梯度的基于数值的排序","authors":"J. Booth","doi":"10.1109/SC.Companion.2012.309","DOIUrl":null,"url":null,"abstract":"The ordering of a matrix vastly impact the convergence rate of precondition conjugate gradient method. Past ordering methods focus solely on a graph representation of the sparse matrix and do not give an inside into the convergence rate that is linked to the preconditioned eigenspectrum. This work attempt to investigate how numerical based ordering may produce a better preconditioned system in terms of faster convergence.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"91 1","pages":"1534-1534"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Poster: Numeric Based Ordering for Preconditioned Conjugate Gradient\",\"authors\":\"J. Booth\",\"doi\":\"10.1109/SC.Companion.2012.309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ordering of a matrix vastly impact the convergence rate of precondition conjugate gradient method. Past ordering methods focus solely on a graph representation of the sparse matrix and do not give an inside into the convergence rate that is linked to the preconditioned eigenspectrum. This work attempt to investigate how numerical based ordering may produce a better preconditioned system in terms of faster convergence.\",\"PeriodicalId\":6346,\"journal\":{\"name\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"volume\":\"91 1\",\"pages\":\"1534-1534\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.Companion.2012.309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

矩阵的序对前置共轭梯度法的收敛速度有很大影响。过去的排序方法只关注稀疏矩阵的图表示,而没有给出与预条件特征谱相关联的收敛速率的内部。这项工作试图研究基于数值的排序如何在更快的收敛方面产生更好的预置系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poster: Numeric Based Ordering for Preconditioned Conjugate Gradient
The ordering of a matrix vastly impact the convergence rate of precondition conjugate gradient method. Past ordering methods focus solely on a graph representation of the sparse matrix and do not give an inside into the convergence rate that is linked to the preconditioned eigenspectrum. This work attempt to investigate how numerical based ordering may produce a better preconditioned system in terms of faster convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信