虚拟接触事件的刚度:一种非参数贝叶斯方法

Jonathan Browder, S. Bochereau, F. E. V. Beek, Raymond J. King
{"title":"虚拟接触事件的刚度:一种非参数贝叶斯方法","authors":"Jonathan Browder, S. Bochereau, F. E. V. Beek, Raymond J. King","doi":"10.1109/WHC.2019.8816102","DOIUrl":null,"url":null,"abstract":"In this study we investigated the use of simple vibrotactile signals to simulate contact with a virtual object. In particular we explored the relation between properties of the signal and the perceived hardness of the object. The space of stimuli is large, and we have no plausible a priori model for the relationship of parameters to percept. Thus we made use of non-parametric Bayesian methods, in particular utilizing Gaussian process priors. We show that this method both gives insight into the phenomenon of interest and well-predicts a second, separate data set collected via the method of constant stimuli. Thus we argue that it could be a fruitful approach for attacking a variety of perceptual problems.","PeriodicalId":6702,"journal":{"name":"2019 IEEE World Haptics Conference (WHC)","volume":"42 1","pages":"515-520"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stiffness in Virtual Contact Events: A Non-Parametric Bayesian Approach\",\"authors\":\"Jonathan Browder, S. Bochereau, F. E. V. Beek, Raymond J. King\",\"doi\":\"10.1109/WHC.2019.8816102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study we investigated the use of simple vibrotactile signals to simulate contact with a virtual object. In particular we explored the relation between properties of the signal and the perceived hardness of the object. The space of stimuli is large, and we have no plausible a priori model for the relationship of parameters to percept. Thus we made use of non-parametric Bayesian methods, in particular utilizing Gaussian process priors. We show that this method both gives insight into the phenomenon of interest and well-predicts a second, separate data set collected via the method of constant stimuli. Thus we argue that it could be a fruitful approach for attacking a variety of perceptual problems.\",\"PeriodicalId\":6702,\"journal\":{\"name\":\"2019 IEEE World Haptics Conference (WHC)\",\"volume\":\"42 1\",\"pages\":\"515-520\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE World Haptics Conference (WHC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHC.2019.8816102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE World Haptics Conference (WHC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHC.2019.8816102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项研究中,我们研究了使用简单的振动触觉信号来模拟与虚拟物体的接触。特别地,我们探索了信号的性质和物体的感知硬度之间的关系。刺激空间很大,我们没有一个合理的先验模型来解释参数与感知的关系。因此,我们使用了非参数贝叶斯方法,特别是利用高斯过程先验。我们表明,这种方法既能深入了解感兴趣的现象,又能很好地预测通过恒定刺激方法收集的第二个独立数据集。因此,我们认为,这可能是一个富有成效的方法来攻击各种感知问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stiffness in Virtual Contact Events: A Non-Parametric Bayesian Approach
In this study we investigated the use of simple vibrotactile signals to simulate contact with a virtual object. In particular we explored the relation between properties of the signal and the perceived hardness of the object. The space of stimuli is large, and we have no plausible a priori model for the relationship of parameters to percept. Thus we made use of non-parametric Bayesian methods, in particular utilizing Gaussian process priors. We show that this method both gives insight into the phenomenon of interest and well-predicts a second, separate data set collected via the method of constant stimuli. Thus we argue that it could be a fruitful approach for attacking a variety of perceptual problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信