为对象相关语句序列自动生成自然语言描述

Xiaoran Wang, L. Pollock, K. Vijay-Shanker
{"title":"为对象相关语句序列自动生成自然语言描述","authors":"Xiaoran Wang, L. Pollock, K. Vijay-Shanker","doi":"10.1109/SANER.2017.7884622","DOIUrl":null,"url":null,"abstract":"Current source code analyses driving software maintenance tools treat methods as either a single unit or a set of individual statements or words. They often leverage method names and any existing internal comments. However, internal comments are rare, and method names do not typically capture the method's multiple high-level algorithmic steps that are too small to be a single method, but require more than one statement to implement. Previous work demonstrated feasibility of identifying high level actions automatically for loops; however, many high level actions remain unaddressed and undocumented, particularly sequences of consecutive statements that are associated with each other primarily by object references. We call these object-related action units. In this paper, we present an approach to automatically generate natural language descriptions of object-related action units within methods. We leverage the available, large source of high-quality open source projects to learn the templates of object-related actions, identify the statement that can represent the main action, and generate natural language descriptions for these actions. Our evaluation study of a set of 100 object-related statement sequences showed promise of our approach to automatically identify the action and arguments and generate natural language descriptions.","PeriodicalId":6541,"journal":{"name":"2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"24 1","pages":"205-216"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Automatically generating natural language descriptions for object-related statement sequences\",\"authors\":\"Xiaoran Wang, L. Pollock, K. Vijay-Shanker\",\"doi\":\"10.1109/SANER.2017.7884622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current source code analyses driving software maintenance tools treat methods as either a single unit or a set of individual statements or words. They often leverage method names and any existing internal comments. However, internal comments are rare, and method names do not typically capture the method's multiple high-level algorithmic steps that are too small to be a single method, but require more than one statement to implement. Previous work demonstrated feasibility of identifying high level actions automatically for loops; however, many high level actions remain unaddressed and undocumented, particularly sequences of consecutive statements that are associated with each other primarily by object references. We call these object-related action units. In this paper, we present an approach to automatically generate natural language descriptions of object-related action units within methods. We leverage the available, large source of high-quality open source projects to learn the templates of object-related actions, identify the statement that can represent the main action, and generate natural language descriptions for these actions. Our evaluation study of a set of 100 object-related statement sequences showed promise of our approach to automatically identify the action and arguments and generate natural language descriptions.\",\"PeriodicalId\":6541,\"journal\":{\"name\":\"2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"volume\":\"24 1\",\"pages\":\"205-216\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SANER.2017.7884622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SANER.2017.7884622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

当前驱动软件维护工具的源代码分析将方法视为单个单元或一组单独的语句或单词。它们经常利用方法名和任何现有的内部注释。然而,内部注释很少见,而且方法名通常不会捕获方法的多个高级算法步骤,这些步骤对于单个方法来说太小了,但需要多个语句来实现。先前的工作证明了自动为循环识别高级动作的可行性;然而,许多高级操作仍然没有得到处理,也没有文档记录,特别是主要通过对象引用相互关联的连续语句序列。我们称这些为与对象相关的操作单元。在本文中,我们提出了一种在方法中自动生成与对象相关的操作单元的自然语言描述的方法。我们利用可用的高质量开源项目的大量资源来学习与对象相关的操作模板,识别可以表示主要操作的语句,并为这些操作生成自然语言描述。我们对一组100个对象相关语句序列的评估研究表明,我们的方法有望自动识别动作和参数,并生成自然语言描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatically generating natural language descriptions for object-related statement sequences
Current source code analyses driving software maintenance tools treat methods as either a single unit or a set of individual statements or words. They often leverage method names and any existing internal comments. However, internal comments are rare, and method names do not typically capture the method's multiple high-level algorithmic steps that are too small to be a single method, but require more than one statement to implement. Previous work demonstrated feasibility of identifying high level actions automatically for loops; however, many high level actions remain unaddressed and undocumented, particularly sequences of consecutive statements that are associated with each other primarily by object references. We call these object-related action units. In this paper, we present an approach to automatically generate natural language descriptions of object-related action units within methods. We leverage the available, large source of high-quality open source projects to learn the templates of object-related actions, identify the statement that can represent the main action, and generate natural language descriptions for these actions. Our evaluation study of a set of 100 object-related statement sequences showed promise of our approach to automatically identify the action and arguments and generate natural language descriptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信