Fırat Kıpçak, B. Erdil, M. Tapan, Abdulhalim Karasin
{"title":"孔洞对钢筋混凝土板抗弯承载力的影响","authors":"Fırat Kıpçak, B. Erdil, M. Tapan, Abdulhalim Karasin","doi":"10.3311/ppci.21988","DOIUrl":null,"url":null,"abstract":"The voided reinforced concrete slab system is mainly produced with polyester foam placed mostly at the bottom of the slab. The aim of the voids is to reduce the weight of the slab. In this paper behavior of the voided reinforced concrete slabs in which voids placed at the mid-height of the slab cross-section, is examined analytically. A series of models were created to come up with a lightweight slab. Two distinct slab models were analyzed using the ABAQUS software. In the first group, slabs had three layers, in which bottom and top layers were of solid reinforced concrete, but the mid layer was of voided unreinforced concrete. In the second layer, in order to increase the contact between top and bottom layers of the slab, crossties were utilized, and the mid layer was reinforced accordingly. Since all the layers were 5 cm thick, the total thickness of the slabs were 15 cm. Slabs were 100 cm wide and 200 cm long. They were simulated the three-point bending test. Concrete damaged plasticity material model (CDPM) for concrete and elastoplastic material model for steel was selected. From the results it was found that moment capacity decreased with the increase in the volume of the voids. There was a sudden decrease in strength after reaching the yield strength in voided slab without a crosstie. In addition, crossties enabled the reduction of the weight of the slabs without significant decrease in moment capacity.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Voids on Flexural Capacity of Reinforced Concrete Slabs\",\"authors\":\"Fırat Kıpçak, B. Erdil, M. Tapan, Abdulhalim Karasin\",\"doi\":\"10.3311/ppci.21988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The voided reinforced concrete slab system is mainly produced with polyester foam placed mostly at the bottom of the slab. The aim of the voids is to reduce the weight of the slab. In this paper behavior of the voided reinforced concrete slabs in which voids placed at the mid-height of the slab cross-section, is examined analytically. A series of models were created to come up with a lightweight slab. Two distinct slab models were analyzed using the ABAQUS software. In the first group, slabs had three layers, in which bottom and top layers were of solid reinforced concrete, but the mid layer was of voided unreinforced concrete. In the second layer, in order to increase the contact between top and bottom layers of the slab, crossties were utilized, and the mid layer was reinforced accordingly. Since all the layers were 5 cm thick, the total thickness of the slabs were 15 cm. Slabs were 100 cm wide and 200 cm long. They were simulated the three-point bending test. Concrete damaged plasticity material model (CDPM) for concrete and elastoplastic material model for steel was selected. From the results it was found that moment capacity decreased with the increase in the volume of the voids. There was a sudden decrease in strength after reaching the yield strength in voided slab without a crosstie. In addition, crossties enabled the reduction of the weight of the slabs without significant decrease in moment capacity.\",\"PeriodicalId\":49705,\"journal\":{\"name\":\"Periodica Polytechnica-Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Polytechnica-Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppci.21988\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.21988","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
The Effect of Voids on Flexural Capacity of Reinforced Concrete Slabs
The voided reinforced concrete slab system is mainly produced with polyester foam placed mostly at the bottom of the slab. The aim of the voids is to reduce the weight of the slab. In this paper behavior of the voided reinforced concrete slabs in which voids placed at the mid-height of the slab cross-section, is examined analytically. A series of models were created to come up with a lightweight slab. Two distinct slab models were analyzed using the ABAQUS software. In the first group, slabs had three layers, in which bottom and top layers were of solid reinforced concrete, but the mid layer was of voided unreinforced concrete. In the second layer, in order to increase the contact between top and bottom layers of the slab, crossties were utilized, and the mid layer was reinforced accordingly. Since all the layers were 5 cm thick, the total thickness of the slabs were 15 cm. Slabs were 100 cm wide and 200 cm long. They were simulated the three-point bending test. Concrete damaged plasticity material model (CDPM) for concrete and elastoplastic material model for steel was selected. From the results it was found that moment capacity decreased with the increase in the volume of the voids. There was a sudden decrease in strength after reaching the yield strength in voided slab without a crosstie. In addition, crossties enabled the reduction of the weight of the slabs without significant decrease in moment capacity.
期刊介绍:
Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly.
Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering.
The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.