一种结合蚁群优化和遗传算法的多元线性回归光谱波长选择新方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qing Huang, Heru Xue, Jiangping Liu, Xinhua Jiang
{"title":"一种结合蚁群优化和遗传算法的多元线性回归光谱波长选择新方法","authors":"Qing Huang, Heru Xue, Jiangping Liu, Xinhua Jiang","doi":"10.1155/2022/2440518","DOIUrl":null,"url":null,"abstract":"Wavelength selection is one of the key steps in quantitative spectral analysis, which reduces the computation time while also improving the prediction accuracy of the model. In this paper, we propose a wavelength selection algorithm based on the ant colony optimization (ACO), in which the absolute value of the regression coefficient of the multiple linear regression (MLR) model is used as the basis for evaluating the importance of wavelengths, and the absolute value of the regression coefficient after full wavelength MLR modeling is used as the initial pheromone value of the ant colony optimization (MLR-ACO). In each iteration, the absolute value of the regression coefficient corresponding to each wavelength of the individual with the highest fitness value is used as the basis for a pheromone update. The crossover operator is introduced in MLR-ACO (MLR-ACO-GA), and the individuals with the top 100 fitness values in MLR-ACO are used as the initial population of the genetic algorithm (GA). A selected frequency of wavelengths greater than the threshold among MLR-ACO individuals is calculated. A number of coarse interval points are generated according to the selected frequency, and a coarse crossover operation is performed at the coarse interval points. Fine crossover points are randomly generated within the coarse interval, and fine crossover operations are performed within the coarse interval to exploit the potential of combining excellent individuals in MLR-ACO with each other as much as possible. MLR-ACO can well solve the problem of traditional ACO initial pheromone scarcity, and MLR-ACO-GA can avoid MLR-ACO falling into a local optimum to a certain extent and be more flexible in the selection of the number of wavelengths, which can give full play to the advantages of MLR-ACO.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A New Method for Spectral Wavelength Selection Based on Multiple Linear Regression Combined with Ant Colony Optimization and Genetic Algorithm\",\"authors\":\"Qing Huang, Heru Xue, Jiangping Liu, Xinhua Jiang\",\"doi\":\"10.1155/2022/2440518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wavelength selection is one of the key steps in quantitative spectral analysis, which reduces the computation time while also improving the prediction accuracy of the model. In this paper, we propose a wavelength selection algorithm based on the ant colony optimization (ACO), in which the absolute value of the regression coefficient of the multiple linear regression (MLR) model is used as the basis for evaluating the importance of wavelengths, and the absolute value of the regression coefficient after full wavelength MLR modeling is used as the initial pheromone value of the ant colony optimization (MLR-ACO). In each iteration, the absolute value of the regression coefficient corresponding to each wavelength of the individual with the highest fitness value is used as the basis for a pheromone update. The crossover operator is introduced in MLR-ACO (MLR-ACO-GA), and the individuals with the top 100 fitness values in MLR-ACO are used as the initial population of the genetic algorithm (GA). A selected frequency of wavelengths greater than the threshold among MLR-ACO individuals is calculated. A number of coarse interval points are generated according to the selected frequency, and a coarse crossover operation is performed at the coarse interval points. Fine crossover points are randomly generated within the coarse interval, and fine crossover operations are performed within the coarse interval to exploit the potential of combining excellent individuals in MLR-ACO with each other as much as possible. MLR-ACO can well solve the problem of traditional ACO initial pheromone scarcity, and MLR-ACO-GA can avoid MLR-ACO falling into a local optimum to a certain extent and be more flexible in the selection of the number of wavelengths, which can give full play to the advantages of MLR-ACO.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/2440518\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/2440518","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

波长选择是定量光谱分析的关键步骤之一,在减少计算时间的同时也提高了模型的预测精度。本文提出了一种基于蚁群优化(蚁群优化)的波长选择算法,该算法以多元线性回归(MLR)模型的回归系数绝对值作为评估波长重要性的依据,并将全波长MLR建模后的回归系数绝对值作为蚁群优化(MLR-ACO)的初始信息素值。在每次迭代中,适应度值最高的个体的每个波长对应的回归系数的绝对值作为信息素更新的基础。在MLR-ACO (MLR-ACO-GA)算法中引入交叉算子,将适应度值前100的个体作为遗传算法的初始种群。计算出MLR-ACO个体中波长大于阈值的选定频率。根据所选频率生成多个粗间隔点,在粗间隔点处进行粗交叉操作。在粗区间内随机生成精细交叉点,在粗区间内进行精细交叉操作,尽可能挖掘MLR-ACO中优秀个体相互结合的潜力。MLR-ACO可以很好地解决传统蚁群算法初始信息素稀缺的问题,MLR-ACO- ga可以在一定程度上避免MLR-ACO陷入局部最优,并且在波长数的选择上更加灵活,可以充分发挥MLR-ACO的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Method for Spectral Wavelength Selection Based on Multiple Linear Regression Combined with Ant Colony Optimization and Genetic Algorithm
Wavelength selection is one of the key steps in quantitative spectral analysis, which reduces the computation time while also improving the prediction accuracy of the model. In this paper, we propose a wavelength selection algorithm based on the ant colony optimization (ACO), in which the absolute value of the regression coefficient of the multiple linear regression (MLR) model is used as the basis for evaluating the importance of wavelengths, and the absolute value of the regression coefficient after full wavelength MLR modeling is used as the initial pheromone value of the ant colony optimization (MLR-ACO). In each iteration, the absolute value of the regression coefficient corresponding to each wavelength of the individual with the highest fitness value is used as the basis for a pheromone update. The crossover operator is introduced in MLR-ACO (MLR-ACO-GA), and the individuals with the top 100 fitness values in MLR-ACO are used as the initial population of the genetic algorithm (GA). A selected frequency of wavelengths greater than the threshold among MLR-ACO individuals is calculated. A number of coarse interval points are generated according to the selected frequency, and a coarse crossover operation is performed at the coarse interval points. Fine crossover points are randomly generated within the coarse interval, and fine crossover operations are performed within the coarse interval to exploit the potential of combining excellent individuals in MLR-ACO with each other as much as possible. MLR-ACO can well solve the problem of traditional ACO initial pheromone scarcity, and MLR-ACO-GA can avoid MLR-ACO falling into a local optimum to a certain extent and be more flexible in the selection of the number of wavelengths, which can give full play to the advantages of MLR-ACO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信