{"title":"管内液体脉冲放电冲击波压力特性研究","authors":"Zhiying Gao, Bing Sun, Bo Wang, X. Zhu, Zhiyu Yan","doi":"10.4028/www.scientific.net/AMR.805-806.906","DOIUrl":null,"url":null,"abstract":"In this paper, the shock wave characteristics of pulsed discharge in liquid which occurred in the pipe with rod-rod electrodes were studied. The effects of shock wave peak pressure in the discharge were studied with changed the discharge voltage and electrode gap. The results show that the peak pressure of shock wave increased with the increasing of voltage. When the discharge voltage 22kV, the peak pressure of shock wave increased first and then decreased with the electrode gap increased. However, the discharge voltages 26kV and 28kV, the peak pressure of shock waves increased with electrode gap increased. The pressure of the shock wave (Pr) decays exponentially with the distance (r) from the discharging center. Under this experimental condition, the shock wave intensity is calculated by averaging many values of the experiment, and the experience formula is Pr = 2.56E·e-0.4831r.","PeriodicalId":7271,"journal":{"name":"Advanced Materials Research","volume":"10 1","pages":"906 - 910"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study on the Shock Wave Pressure Characteristics of Pulsed Discharge in Liquid in the Pipe\",\"authors\":\"Zhiying Gao, Bing Sun, Bo Wang, X. Zhu, Zhiyu Yan\",\"doi\":\"10.4028/www.scientific.net/AMR.805-806.906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the shock wave characteristics of pulsed discharge in liquid which occurred in the pipe with rod-rod electrodes were studied. The effects of shock wave peak pressure in the discharge were studied with changed the discharge voltage and electrode gap. The results show that the peak pressure of shock wave increased with the increasing of voltage. When the discharge voltage 22kV, the peak pressure of shock wave increased first and then decreased with the electrode gap increased. However, the discharge voltages 26kV and 28kV, the peak pressure of shock waves increased with electrode gap increased. The pressure of the shock wave (Pr) decays exponentially with the distance (r) from the discharging center. Under this experimental condition, the shock wave intensity is calculated by averaging many values of the experiment, and the experience formula is Pr = 2.56E·e-0.4831r.\",\"PeriodicalId\":7271,\"journal\":{\"name\":\"Advanced Materials Research\",\"volume\":\"10 1\",\"pages\":\"906 - 910\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/AMR.805-806.906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/AMR.805-806.906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study on the Shock Wave Pressure Characteristics of Pulsed Discharge in Liquid in the Pipe
In this paper, the shock wave characteristics of pulsed discharge in liquid which occurred in the pipe with rod-rod electrodes were studied. The effects of shock wave peak pressure in the discharge were studied with changed the discharge voltage and electrode gap. The results show that the peak pressure of shock wave increased with the increasing of voltage. When the discharge voltage 22kV, the peak pressure of shock wave increased first and then decreased with the electrode gap increased. However, the discharge voltages 26kV and 28kV, the peak pressure of shock waves increased with electrode gap increased. The pressure of the shock wave (Pr) decays exponentially with the distance (r) from the discharging center. Under this experimental condition, the shock wave intensity is calculated by averaging many values of the experiment, and the experience formula is Pr = 2.56E·e-0.4831r.