通过基于重要性的A/B测试,实验驱动的人类在循环机器学习注释的改进

Rafael Alfaro-Flores, José Salas-Bonilla, Loic Juillard, Juan Esquivel-Rodríguez
{"title":"通过基于重要性的A/B测试,实验驱动的人类在循环机器学习注释的改进","authors":"Rafael Alfaro-Flores, José Salas-Bonilla, Loic Juillard, Juan Esquivel-Rodríguez","doi":"10.1109/CLEI53233.2021.9639977","DOIUrl":null,"url":null,"abstract":"We present an end-to-end experimentation framework to improve the human annotation of data sets used in the training process of Machine Learning models. It covers the instrumentation of the annotation tool, the aggregation of metrics that highlight usage patterns and hypothesis-testing tools that enable the comparison of experimental groups, to decide whether improvements in the annotation process significantly impact the overall results. We show the potential of the protocol using two real-life annotation use cases.","PeriodicalId":6803,"journal":{"name":"2021 XLVII Latin American Computing Conference (CLEI)","volume":"74 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experiment-driven improvements in Human-in-the-loop Machine Learning Annotation via significance-based A/B testing\",\"authors\":\"Rafael Alfaro-Flores, José Salas-Bonilla, Loic Juillard, Juan Esquivel-Rodríguez\",\"doi\":\"10.1109/CLEI53233.2021.9639977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an end-to-end experimentation framework to improve the human annotation of data sets used in the training process of Machine Learning models. It covers the instrumentation of the annotation tool, the aggregation of metrics that highlight usage patterns and hypothesis-testing tools that enable the comparison of experimental groups, to decide whether improvements in the annotation process significantly impact the overall results. We show the potential of the protocol using two real-life annotation use cases.\",\"PeriodicalId\":6803,\"journal\":{\"name\":\"2021 XLVII Latin American Computing Conference (CLEI)\",\"volume\":\"74 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 XLVII Latin American Computing Conference (CLEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEI53233.2021.9639977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 XLVII Latin American Computing Conference (CLEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEI53233.2021.9639977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一个端到端实验框架,以改进机器学习模型训练过程中使用的数据集的人工注释。它涵盖了注释工具的仪表、强调使用模式的度量集合和假设测试工具,这些工具支持实验组的比较,以确定注释过程中的改进是否会显著影响总体结果。我们使用两个真实的注释用例来展示该协议的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experiment-driven improvements in Human-in-the-loop Machine Learning Annotation via significance-based A/B testing
We present an end-to-end experimentation framework to improve the human annotation of data sets used in the training process of Machine Learning models. It covers the instrumentation of the annotation tool, the aggregation of metrics that highlight usage patterns and hypothesis-testing tools that enable the comparison of experimental groups, to decide whether improvements in the annotation process significantly impact the overall results. We show the potential of the protocol using two real-life annotation use cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信