正则和极规下sl(3,C) Zakharov-Shabat系统的辛结构层次与Z2×Z2的Mikhailov型约简

Q4 Mathematics
A. Yanovski
{"title":"正则和极规下sl(3,C) Zakharov-Shabat系统的辛结构层次与Z2×Z2的Mikhailov型约简","authors":"A. Yanovski","doi":"10.7546/giq-20-2019-297-310","DOIUrl":null,"url":null,"abstract":"We consider the theory of the hierarchies of nonlinear evolution equations associated with two gauge-equivalent systems we denote by L± and GMV± (GMVsystem). They are obtained from the Generalized Zakharov-Shabat system on sl(3,C) in general position making a Z2 × Z2 reductions of Mikhailov type in canonical and in pole gauge respectively. Using the Recursion Operators approach and expansions over the adjoint solutions we study the symplectic structures of the hierarchies of the nonlinear evolution equations associated with L± and GMV± and calculate the relation between them.","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchies of Symplectic Structures for sl(3,C) Zakharov-Shabat Systems in Canonical and Pole Gauge with Z2×Z2 Reduction of Mikhailov Type\",\"authors\":\"A. Yanovski\",\"doi\":\"10.7546/giq-20-2019-297-310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the theory of the hierarchies of nonlinear evolution equations associated with two gauge-equivalent systems we denote by L± and GMV± (GMVsystem). They are obtained from the Generalized Zakharov-Shabat system on sl(3,C) in general position making a Z2 × Z2 reductions of Mikhailov type in canonical and in pole gauge respectively. Using the Recursion Operators approach and expansions over the adjoint solutions we study the symplectic structures of the hierarchies of the nonlinear evolution equations associated with L± and GMV± and calculate the relation between them.\",\"PeriodicalId\":53425,\"journal\":{\"name\":\"Geometry, Integrability and Quantization\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry, Integrability and Quantization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/giq-20-2019-297-310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/giq-20-2019-297-310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

研究了用L±和GMV±表示的两个量规等效系统(GMV系统)的非线性演化方程的层次理论。它们是由一般位置上sl(3,C)上的广义Zakharov-Shabat系统分别在正则型和极规中进行了Z2 × Z2型约简得到的。利用递归算子方法和伴随解上的展开式,研究了L±和GMV±相关的非线性演化方程层次的辛结构,并计算了它们之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchies of Symplectic Structures for sl(3,C) Zakharov-Shabat Systems in Canonical and Pole Gauge with Z2×Z2 Reduction of Mikhailov Type
We consider the theory of the hierarchies of nonlinear evolution equations associated with two gauge-equivalent systems we denote by L± and GMV± (GMVsystem). They are obtained from the Generalized Zakharov-Shabat system on sl(3,C) in general position making a Z2 × Z2 reductions of Mikhailov type in canonical and in pole gauge respectively. Using the Recursion Operators approach and expansions over the adjoint solutions we study the symplectic structures of the hierarchies of the nonlinear evolution equations associated with L± and GMV± and calculate the relation between them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry, Integrability and Quantization
Geometry, Integrability and Quantization Mathematics-Mathematical Physics
CiteScore
0.70
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信