{"title":"第二代完整稳定中过度加速失效模式的参数灵敏度","authors":"Kyung-Kyu Yang","doi":"10.1177/14750902231157850","DOIUrl":null,"url":null,"abstract":"In this study, the parameter sensitivity of the level 1 and 2 assessments of the excessive acceleration failure mode in the International Maritime Organization second-generation intact stability was analyzed. Monte-Carlo simulations were conducted using the input parameter space, which was generated using a Gaussian distribution, and a variance-based sensitivity analysis was performed using the Monte-Carlo simulation results. The longitudinal and vertical positions of the check point, natural roll period, and roll decay coefficient were selected as input parameters for the level 1 assessment, whereas the roll damping coefficient and effective wave slope coefficient replaced the roll decay coefficient for the level 2 assessment. The results revealed that the highest total sensitivity index for the level 1 assessment was the natural roll period, which was 0.8, and the effective wave slope had a total sensitivity index of 0.5 for the level 2 assessment. This indicated that the uncertainty of the natural roll period was dominantly propagated to the resultant value of the level 1 assessment, while the effective wave slope coefficient was the most sensitive parameter in the level 2 assessment. The uncertainty in the input variable was found to cause the opposite decision if the resultant value was close to the criterion value under a given loading condition.","PeriodicalId":20667,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","volume":"1 1","pages":"906 - 917"},"PeriodicalIF":1.5000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parameter sensitivity of the excessive acceleration failure mode in second-generation intact stability\",\"authors\":\"Kyung-Kyu Yang\",\"doi\":\"10.1177/14750902231157850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the parameter sensitivity of the level 1 and 2 assessments of the excessive acceleration failure mode in the International Maritime Organization second-generation intact stability was analyzed. Monte-Carlo simulations were conducted using the input parameter space, which was generated using a Gaussian distribution, and a variance-based sensitivity analysis was performed using the Monte-Carlo simulation results. The longitudinal and vertical positions of the check point, natural roll period, and roll decay coefficient were selected as input parameters for the level 1 assessment, whereas the roll damping coefficient and effective wave slope coefficient replaced the roll decay coefficient for the level 2 assessment. The results revealed that the highest total sensitivity index for the level 1 assessment was the natural roll period, which was 0.8, and the effective wave slope had a total sensitivity index of 0.5 for the level 2 assessment. This indicated that the uncertainty of the natural roll period was dominantly propagated to the resultant value of the level 1 assessment, while the effective wave slope coefficient was the most sensitive parameter in the level 2 assessment. The uncertainty in the input variable was found to cause the opposite decision if the resultant value was close to the criterion value under a given loading condition.\",\"PeriodicalId\":20667,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment\",\"volume\":\"1 1\",\"pages\":\"906 - 917\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14750902231157850\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902231157850","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Parameter sensitivity of the excessive acceleration failure mode in second-generation intact stability
In this study, the parameter sensitivity of the level 1 and 2 assessments of the excessive acceleration failure mode in the International Maritime Organization second-generation intact stability was analyzed. Monte-Carlo simulations were conducted using the input parameter space, which was generated using a Gaussian distribution, and a variance-based sensitivity analysis was performed using the Monte-Carlo simulation results. The longitudinal and vertical positions of the check point, natural roll period, and roll decay coefficient were selected as input parameters for the level 1 assessment, whereas the roll damping coefficient and effective wave slope coefficient replaced the roll decay coefficient for the level 2 assessment. The results revealed that the highest total sensitivity index for the level 1 assessment was the natural roll period, which was 0.8, and the effective wave slope had a total sensitivity index of 0.5 for the level 2 assessment. This indicated that the uncertainty of the natural roll period was dominantly propagated to the resultant value of the level 1 assessment, while the effective wave slope coefficient was the most sensitive parameter in the level 2 assessment. The uncertainty in the input variable was found to cause the opposite decision if the resultant value was close to the criterion value under a given loading condition.
期刊介绍:
The Journal of Engineering for the Maritime Environment is concerned with the design, production and operation of engineering artefacts for the maritime environment. The journal straddles the traditional boundaries of naval architecture, marine engineering, offshore/ocean engineering, coastal engineering and port engineering.