异构多核系统综合中的体系结构分解

Valentina Richthammer, T. Schwarzer, S. Wildermann, J. Teich, Michael Glass
{"title":"异构多核系统综合中的体系结构分解","authors":"Valentina Richthammer, T. Schwarzer, S. Wildermann, J. Teich, Michael Glass","doi":"10.1145/3195970.3195995","DOIUrl":null,"url":null,"abstract":"Determining feasible application mappings for Design Space Exploration (DSE) and run-time embedding is a challenge for modern many-core systems. The underlying NP-complete system-synthesis problem faces tremendously complex problem instances due to the hundreds of heterogeneous processing elements, their communication infrastructure, and the resulting number of mapping possibilities. Thus, we propose to employ a search-space splitting (SSS) technique using architecture decomposition to increase the performance of existing design-time and run-time synthesis approaches. The technique first restricts the search for application embeddings to selected sub-architectures at substantially reduced complexity; therefore, the complete architecture needs to be searched only in case no embedding is found on any sub-system. Furthermore, we introduce a basic learning mechanism to detect promising sub-architectures and subsequently restrict the search to those. We exemplify the SSS for a SAT-based and a problem-specific backtracking-based system synthesis as part of DSE for NoC-based many-core systems. Experimental results show drastically reduced execution times (≈ 15–50 × on a 24×24 architecture) and an enhanced quality of the embedding, since less mappings (≈ 20–40 ×, compared to the non-decomposing procedures) need to be discarded due to a timeout.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"19 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Architecture Decomposition in System Synthesis of Heterogeneous Many-Core Systems\",\"authors\":\"Valentina Richthammer, T. Schwarzer, S. Wildermann, J. Teich, Michael Glass\",\"doi\":\"10.1145/3195970.3195995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining feasible application mappings for Design Space Exploration (DSE) and run-time embedding is a challenge for modern many-core systems. The underlying NP-complete system-synthesis problem faces tremendously complex problem instances due to the hundreds of heterogeneous processing elements, their communication infrastructure, and the resulting number of mapping possibilities. Thus, we propose to employ a search-space splitting (SSS) technique using architecture decomposition to increase the performance of existing design-time and run-time synthesis approaches. The technique first restricts the search for application embeddings to selected sub-architectures at substantially reduced complexity; therefore, the complete architecture needs to be searched only in case no embedding is found on any sub-system. Furthermore, we introduce a basic learning mechanism to detect promising sub-architectures and subsequently restrict the search to those. We exemplify the SSS for a SAT-based and a problem-specific backtracking-based system synthesis as part of DSE for NoC-based many-core systems. Experimental results show drastically reduced execution times (≈ 15–50 × on a 24×24 architecture) and an enhanced quality of the embedding, since less mappings (≈ 20–40 ×, compared to the non-decomposing procedures) need to be discarded due to a timeout.\",\"PeriodicalId\":6491,\"journal\":{\"name\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"volume\":\"19 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3195970.3195995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3195995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为设计空间探索(DSE)和运行时嵌入确定可行的应用映射是现代多核系统面临的一个挑战。由于数以百计的异构处理元素、它们的通信基础设施以及由此产生的映射可能性的数量,潜在的np完全系统综合问题面临着极其复杂的问题实例。因此,我们建议使用架构分解的搜索空间分割(SSS)技术来提高现有设计时和运行时综合方法的性能。该技术首先将应用嵌入的搜索限制在选定的子体系结构中,大大降低了复杂性;因此,只有在没有在任何子系统上找到嵌入的情况下,才需要搜索完整的体系结构。此外,我们引入了一种基本的学习机制来检测有前途的子体系结构,并随后将搜索限制在这些子体系结构上。我们举例说明了基于sat和基于特定问题回溯的系统综合的SSS,作为基于noc的多核系统的DSE的一部分。实验结果表明,由于由于超时而需要丢弃的映射更少(与非分解过程相比,≈20-40 x),因此大大减少了执行时间(在24×24架构上≈15-50 x)并提高了嵌入质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Architecture Decomposition in System Synthesis of Heterogeneous Many-Core Systems
Determining feasible application mappings for Design Space Exploration (DSE) and run-time embedding is a challenge for modern many-core systems. The underlying NP-complete system-synthesis problem faces tremendously complex problem instances due to the hundreds of heterogeneous processing elements, their communication infrastructure, and the resulting number of mapping possibilities. Thus, we propose to employ a search-space splitting (SSS) technique using architecture decomposition to increase the performance of existing design-time and run-time synthesis approaches. The technique first restricts the search for application embeddings to selected sub-architectures at substantially reduced complexity; therefore, the complete architecture needs to be searched only in case no embedding is found on any sub-system. Furthermore, we introduce a basic learning mechanism to detect promising sub-architectures and subsequently restrict the search to those. We exemplify the SSS for a SAT-based and a problem-specific backtracking-based system synthesis as part of DSE for NoC-based many-core systems. Experimental results show drastically reduced execution times (≈ 15–50 × on a 24×24 architecture) and an enhanced quality of the embedding, since less mappings (≈ 20–40 ×, compared to the non-decomposing procedures) need to be discarded due to a timeout.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信