Mohamed Boumaiza, Fernando Carmona, M. Poli, M. Asperti, A. Gianoncelli, Michela Bertuzzi, Paola Ruzzenenti, P. Arosio, M. Marzouki
{"title":"骆驼铁蛋白与人铁蛋白H链、L链功能性杂交物的制备与表征","authors":"Mohamed Boumaiza, Fernando Carmona, M. Poli, M. Asperti, A. Gianoncelli, Michela Bertuzzi, Paola Ruzzenenti, P. Arosio, M. Marzouki","doi":"10.1093/protein/gzw066","DOIUrl":null,"url":null,"abstract":"Hepcidin is a liver-synthesized hormone that plays a central role in the regulation of systemic iron homeostasis. To produce a new tool for its functional properties the cDNA coding for camel hepcidin-25 was cloned at the 5’end of human FTH sequence into the pASK-IBA43plus vector for expression in Escherichia coli. The recombinant fusion hepcidin–ferritin-H subunit was isolated as an insoluble iron-containing protein. When alone it did not refold in a 24-mer ferritin molecule, but it did when renatured together with H- or L-ferritin chains. We obtained stable ferritin shells exposing about 4 hepcidin peptides per 24-mer shell. The molecules were then reduced and re-oxidized in a controlled manner to allow the formation of the proper hepcidin disulfide bridges. The functionality of the exposed hepcidin was confirmed by its ability to specifically bind the mouse macrophage cell line J774 that express ferroportin and to promote ferroportin degradation. This chimeric protein may be useful for studying the hepcidin–ferroportin interaction in cells and also as drug-delivery agent.","PeriodicalId":20681,"journal":{"name":"Protein Engineering, Design and Selection","volume":"1 1","pages":"77–84"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Production and characterization of functional recombinant hybrid heteropolymers of camel hepcidin and human ferritin H and L chains\",\"authors\":\"Mohamed Boumaiza, Fernando Carmona, M. Poli, M. Asperti, A. Gianoncelli, Michela Bertuzzi, Paola Ruzzenenti, P. Arosio, M. Marzouki\",\"doi\":\"10.1093/protein/gzw066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hepcidin is a liver-synthesized hormone that plays a central role in the regulation of systemic iron homeostasis. To produce a new tool for its functional properties the cDNA coding for camel hepcidin-25 was cloned at the 5’end of human FTH sequence into the pASK-IBA43plus vector for expression in Escherichia coli. The recombinant fusion hepcidin–ferritin-H subunit was isolated as an insoluble iron-containing protein. When alone it did not refold in a 24-mer ferritin molecule, but it did when renatured together with H- or L-ferritin chains. We obtained stable ferritin shells exposing about 4 hepcidin peptides per 24-mer shell. The molecules were then reduced and re-oxidized in a controlled manner to allow the formation of the proper hepcidin disulfide bridges. The functionality of the exposed hepcidin was confirmed by its ability to specifically bind the mouse macrophage cell line J774 that express ferroportin and to promote ferroportin degradation. This chimeric protein may be useful for studying the hepcidin–ferroportin interaction in cells and also as drug-delivery agent.\",\"PeriodicalId\":20681,\"journal\":{\"name\":\"Protein Engineering, Design and Selection\",\"volume\":\"1 1\",\"pages\":\"77–84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Engineering, Design and Selection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzw066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering, Design and Selection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/protein/gzw066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Production and characterization of functional recombinant hybrid heteropolymers of camel hepcidin and human ferritin H and L chains
Hepcidin is a liver-synthesized hormone that plays a central role in the regulation of systemic iron homeostasis. To produce a new tool for its functional properties the cDNA coding for camel hepcidin-25 was cloned at the 5’end of human FTH sequence into the pASK-IBA43plus vector for expression in Escherichia coli. The recombinant fusion hepcidin–ferritin-H subunit was isolated as an insoluble iron-containing protein. When alone it did not refold in a 24-mer ferritin molecule, but it did when renatured together with H- or L-ferritin chains. We obtained stable ferritin shells exposing about 4 hepcidin peptides per 24-mer shell. The molecules were then reduced and re-oxidized in a controlled manner to allow the formation of the proper hepcidin disulfide bridges. The functionality of the exposed hepcidin was confirmed by its ability to specifically bind the mouse macrophage cell line J774 that express ferroportin and to promote ferroportin degradation. This chimeric protein may be useful for studying the hepcidin–ferroportin interaction in cells and also as drug-delivery agent.