{"title":"量化南极冰盖对全球海平面变化的贡献","authors":"M. Broeke","doi":"10.1051/JP4:2006139013","DOIUrl":null,"url":null,"abstract":"At present, the mass balance of the Antarctic Ice Sheet (AIS) and its contribution to global sea level change are poorly known. Current methods to determine AIS mass balance as well as the inherent uncertainties are discussed. Special emphasis is placed on the increasingly important role of regional atmospheric climate models, which can reduce the uncertainties in surface accumulation, the correction for the firn layer depth and density in ice thickness calculations and moreover help in interpreting surface elevation changes in terms of accumulation and firn density variability. Some recent advances in these fields of research are presented.","PeriodicalId":14838,"journal":{"name":"Journal De Physique Iv","volume":"44 1","pages":"175-183"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Towards quantifying the contribution of the Antarctic ice sheet to global sea level change\",\"authors\":\"M. Broeke\",\"doi\":\"10.1051/JP4:2006139013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, the mass balance of the Antarctic Ice Sheet (AIS) and its contribution to global sea level change are poorly known. Current methods to determine AIS mass balance as well as the inherent uncertainties are discussed. Special emphasis is placed on the increasingly important role of regional atmospheric climate models, which can reduce the uncertainties in surface accumulation, the correction for the firn layer depth and density in ice thickness calculations and moreover help in interpreting surface elevation changes in terms of accumulation and firn density variability. Some recent advances in these fields of research are presented.\",\"PeriodicalId\":14838,\"journal\":{\"name\":\"Journal De Physique Iv\",\"volume\":\"44 1\",\"pages\":\"175-183\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Physique Iv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/JP4:2006139013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique Iv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JP4:2006139013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards quantifying the contribution of the Antarctic ice sheet to global sea level change
At present, the mass balance of the Antarctic Ice Sheet (AIS) and its contribution to global sea level change are poorly known. Current methods to determine AIS mass balance as well as the inherent uncertainties are discussed. Special emphasis is placed on the increasingly important role of regional atmospheric climate models, which can reduce the uncertainties in surface accumulation, the correction for the firn layer depth and density in ice thickness calculations and moreover help in interpreting surface elevation changes in terms of accumulation and firn density variability. Some recent advances in these fields of research are presented.