平面p调和映射的几何:凸性、水平曲线和等周不等式

IF 1.2 2区 数学 Q1 MATHEMATICS
Tomasz Adamowicz
{"title":"平面p调和映射的几何:凸性、水平曲线和等周不等式","authors":"Tomasz Adamowicz","doi":"10.2422/2036-2145.201201_010","DOIUrl":null,"url":null,"abstract":"We discuss various representations of planar p-harmonic systems of \nequations and their solutions. For coordinate functions of p-harmonic maps we \nanalyze signs of their Hessians, the Gauss curvature of p-harmonic surfaces, the \nlength of level curves as well as we discuss curves of steepest descent. The \nisoperimetric inequality for the level curves of coordinate functions of planar pharmonic \nmaps is proven. Our main techniques involve relations between quasiregular \nmaps and planar PDEs. We generalize some results due to P. Lindqvist, \nG. Alessandrini, G. Talenti and P. Laurence.","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"1 1","pages":"263-292"},"PeriodicalIF":1.2000,"publicationDate":"2013-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"The geometry of planar p-harmonic mappings: convexity, level curves and the isoperimetric inequality\",\"authors\":\"Tomasz Adamowicz\",\"doi\":\"10.2422/2036-2145.201201_010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss various representations of planar p-harmonic systems of \\nequations and their solutions. For coordinate functions of p-harmonic maps we \\nanalyze signs of their Hessians, the Gauss curvature of p-harmonic surfaces, the \\nlength of level curves as well as we discuss curves of steepest descent. The \\nisoperimetric inequality for the level curves of coordinate functions of planar pharmonic \\nmaps is proven. Our main techniques involve relations between quasiregular \\nmaps and planar PDEs. We generalize some results due to P. Lindqvist, \\nG. Alessandrini, G. Talenti and P. Laurence.\",\"PeriodicalId\":50966,\"journal\":{\"name\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"volume\":\"1 1\",\"pages\":\"263-292\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2013-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.201201_010\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2422/2036-2145.201201_010","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

讨论了平面p调和方程组的各种表示形式及其解。对于p调和映射的坐标函数,我们分析了它们的Hessians符号、p调和曲面的高斯曲率、水平曲线的长度以及最陡下降曲线。证明了平面谐波映射坐标函数等距曲线的等距不等式。我们的主要技术涉及拟正则映射与平面偏微分方程之间的关系。我们推广了P. Lindqvist, G. Alessandrini, G. Talenti和P. Laurence的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The geometry of planar p-harmonic mappings: convexity, level curves and the isoperimetric inequality
We discuss various representations of planar p-harmonic systems of equations and their solutions. For coordinate functions of p-harmonic maps we analyze signs of their Hessians, the Gauss curvature of p-harmonic surfaces, the length of level curves as well as we discuss curves of steepest descent. The isoperimetric inequality for the level curves of coordinate functions of planar pharmonic maps is proven. Our main techniques involve relations between quasiregular maps and planar PDEs. We generalize some results due to P. Lindqvist, G. Alessandrini, G. Talenti and P. Laurence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication. The Annals of the Normale Scuola di Pisa - Science Class is published quarterly Soft cover, 17x24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信