{"title":"一对相容李括号的全称包络代数","authors":"V. Gubarev","doi":"10.1142/S0218196722500588","DOIUrl":null,"url":null,"abstract":"Applying the Poincare-Birkhoff-Witt property and the Groebner-Shirshov bases technique, we find the linear basis of the associative universal enveloping algebra in the sense of V. Ginzburg and M. Kapranov of a pair of compatible Lie brackets. We state that the growth rate of this universal enveloping over $n$-dimensional compatible Lie algebra equals $n+1$.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"1 1","pages":"1335-1344"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal enveloping algebra of a pair of compatible Lie brackets\",\"authors\":\"V. Gubarev\",\"doi\":\"10.1142/S0218196722500588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applying the Poincare-Birkhoff-Witt property and the Groebner-Shirshov bases technique, we find the linear basis of the associative universal enveloping algebra in the sense of V. Ginzburg and M. Kapranov of a pair of compatible Lie brackets. We state that the growth rate of this universal enveloping over $n$-dimensional compatible Lie algebra equals $n+1$.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"1 1\",\"pages\":\"1335-1344\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218196722500588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218196722500588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Universal enveloping algebra of a pair of compatible Lie brackets
Applying the Poincare-Birkhoff-Witt property and the Groebner-Shirshov bases technique, we find the linear basis of the associative universal enveloping algebra in the sense of V. Ginzburg and M. Kapranov of a pair of compatible Lie brackets. We state that the growth rate of this universal enveloping over $n$-dimensional compatible Lie algebra equals $n+1$.