基于二次标化方法的双目标工效装配线平衡模型

IF 2.2 3区 工程技术 Q3 ENGINEERING, MANUFACTURING
Busra N. Yetkin, Emin Kahya
{"title":"基于二次标化方法的双目标工效装配线平衡模型","authors":"Busra N. Yetkin,&nbsp;Emin Kahya","doi":"10.1002/hfm.20967","DOIUrl":null,"url":null,"abstract":"<p>The most important factor affecting efficiency and ergonomic risk levels in an assembly line design is the problem of assigning certain tasks to certain stations, namely the assembly line balancing problem. In the literature, assembly line balancing problem has often been studied, but studies that consider ergonomic risks are deficient. Recently, it has been one of the issues that have started to attract great attention with the realization of health problems caused by assembly lines. To this end, in this study, a bi-objective mathematical model is developed that considers balancing assembly line station time and ergonomic risk levels, simultaneously. It is aimed to minimize both station time and the total deviations of ergonomic risk scores for the stations. Weighted sum and conic scalarization methods are applied to solve the bi-objective model. To analyze the outcomes of the developed model, an application is proposed and tested on a real industrial case, at a home appliance assembly line. The deployment of the OMAX method is a contribution to the literature since it shows an analysis tool which evaluates the results of assembly line balancing. This method evaluates the performance of the stations based on different criteria such as station time and ergonomic risk. The number of high-risk stations is obtained as 13 in the single-objective model aiming to minimize the station time, while it is found to be nine in the bi-objective model solved with CSM, without an increase in the total number of stations.</p>","PeriodicalId":55048,"journal":{"name":"Human Factors and Ergonomics in Manufacturing & Service Industries","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A bi-objective ergonomic assembly line balancing model with conic scalarization method\",\"authors\":\"Busra N. Yetkin,&nbsp;Emin Kahya\",\"doi\":\"10.1002/hfm.20967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The most important factor affecting efficiency and ergonomic risk levels in an assembly line design is the problem of assigning certain tasks to certain stations, namely the assembly line balancing problem. In the literature, assembly line balancing problem has often been studied, but studies that consider ergonomic risks are deficient. Recently, it has been one of the issues that have started to attract great attention with the realization of health problems caused by assembly lines. To this end, in this study, a bi-objective mathematical model is developed that considers balancing assembly line station time and ergonomic risk levels, simultaneously. It is aimed to minimize both station time and the total deviations of ergonomic risk scores for the stations. Weighted sum and conic scalarization methods are applied to solve the bi-objective model. To analyze the outcomes of the developed model, an application is proposed and tested on a real industrial case, at a home appliance assembly line. The deployment of the OMAX method is a contribution to the literature since it shows an analysis tool which evaluates the results of assembly line balancing. This method evaluates the performance of the stations based on different criteria such as station time and ergonomic risk. The number of high-risk stations is obtained as 13 in the single-objective model aiming to minimize the station time, while it is found to be nine in the bi-objective model solved with CSM, without an increase in the total number of stations.</p>\",\"PeriodicalId\":55048,\"journal\":{\"name\":\"Human Factors and Ergonomics in Manufacturing & Service Industries\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Factors and Ergonomics in Manufacturing & Service Industries\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hfm.20967\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Factors and Ergonomics in Manufacturing & Service Industries","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hfm.20967","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 3

摘要

在装配线设计中,影响效率和人体工程学风险水平的最重要因素是将某些任务分配到某些工位的问题,即装配线平衡问题。在文献中,装配线平衡问题经常被研究,但考虑人体工程学风险的研究是缺乏的。最近,随着对装配线造成的健康问题的认识,它已成为引起人们极大关注的问题之一。为此,在本研究中,建立了一个双目标数学模型,同时考虑平衡装配线工作站时间和人体工程学风险水平。它的目的是最小化站位时间和站位的人体工程学风险评分的总偏差。采用加权和和二次标度法求解双目标模型。为了分析所开发的模型的结果,提出了一个应用程序,并在一个实际的工业案例中进行了测试,即家电装配线。OMAX方法的部署是对文献的贡献,因为它显示了一个评估装配线平衡结果的分析工具。该方法基于不同的标准,如站位时间和人体工程学风险来评估站位的性能。以台站时间最小为目标的单目标模型得到的高风险台站数为13个,而采用CSM求解的双目标模型得到的高风险台站数为9个,且台站总数不增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A bi-objective ergonomic assembly line balancing model with conic scalarization method

The most important factor affecting efficiency and ergonomic risk levels in an assembly line design is the problem of assigning certain tasks to certain stations, namely the assembly line balancing problem. In the literature, assembly line balancing problem has often been studied, but studies that consider ergonomic risks are deficient. Recently, it has been one of the issues that have started to attract great attention with the realization of health problems caused by assembly lines. To this end, in this study, a bi-objective mathematical model is developed that considers balancing assembly line station time and ergonomic risk levels, simultaneously. It is aimed to minimize both station time and the total deviations of ergonomic risk scores for the stations. Weighted sum and conic scalarization methods are applied to solve the bi-objective model. To analyze the outcomes of the developed model, an application is proposed and tested on a real industrial case, at a home appliance assembly line. The deployment of the OMAX method is a contribution to the literature since it shows an analysis tool which evaluates the results of assembly line balancing. This method evaluates the performance of the stations based on different criteria such as station time and ergonomic risk. The number of high-risk stations is obtained as 13 in the single-objective model aiming to minimize the station time, while it is found to be nine in the bi-objective model solved with CSM, without an increase in the total number of stations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
8.30%
发文量
37
审稿时长
6.0 months
期刊介绍: The purpose of Human Factors and Ergonomics in Manufacturing & Service Industries is to facilitate discovery, integration, and application of scientific knowledge about human aspects of manufacturing, and to provide a forum for worldwide dissemination of such knowledge for its application and benefit to manufacturing industries. The journal covers a broad spectrum of ergonomics and human factors issues with a focus on the design, operation and management of contemporary manufacturing systems, both in the shop floor and office environments, in the quest for manufacturing agility, i.e. enhancement and integration of human skills with hardware performance for improved market competitiveness, management of change, product and process quality, and human-system reliability. The inter- and cross-disciplinary nature of the journal allows for a wide scope of issues relevant to manufacturing system design and engineering, human resource management, social, organizational, safety, and health issues. Examples of specific subject areas of interest include: implementation of advanced manufacturing technology, human aspects of computer-aided design and engineering, work design, compensation and appraisal, selection training and education, labor-management relations, agile manufacturing and virtual companies, human factors in total quality management, prevention of work-related musculoskeletal disorders, ergonomics of workplace, equipment and tool design, ergonomics programs, guides and standards for industry, automation safety and robot systems, human skills development and knowledge enhancing technologies, reliability, and safety and worker health issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信