{"title":"从高维数据中自顶向下挖掘有趣模式","authors":"Hongyan Liu, Jiawei Han, Dong Xin, Zheng Shao","doi":"10.1109/ICDE.2006.161","DOIUrl":null,"url":null,"abstract":"Many real world applications deal with transactional data, characterized by a huge number of transactions (tuples) with a small number of dimensions (attributes). However, there are some other applications that involve rather high dimensional data with a small number of tuples. Examples of such applications include bioinformatics, survey-based statistical analysis, text processing, and so on. High dimensional data pose great challenges to most existing data mining algorithms. Although there are numerous algorithms dealing with transactional data sets, there are few algorithms oriented to very high dimensional data sets with a relatively small number of tuples.","PeriodicalId":6819,"journal":{"name":"22nd International Conference on Data Engineering (ICDE'06)","volume":"411 1","pages":"114-114"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Top-Down Mining of Interesting Patterns from Very High Dimensional Data\",\"authors\":\"Hongyan Liu, Jiawei Han, Dong Xin, Zheng Shao\",\"doi\":\"10.1109/ICDE.2006.161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many real world applications deal with transactional data, characterized by a huge number of transactions (tuples) with a small number of dimensions (attributes). However, there are some other applications that involve rather high dimensional data with a small number of tuples. Examples of such applications include bioinformatics, survey-based statistical analysis, text processing, and so on. High dimensional data pose great challenges to most existing data mining algorithms. Although there are numerous algorithms dealing with transactional data sets, there are few algorithms oriented to very high dimensional data sets with a relatively small number of tuples.\",\"PeriodicalId\":6819,\"journal\":{\"name\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"volume\":\"411 1\",\"pages\":\"114-114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2006.161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Data Engineering (ICDE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2006.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Top-Down Mining of Interesting Patterns from Very High Dimensional Data
Many real world applications deal with transactional data, characterized by a huge number of transactions (tuples) with a small number of dimensions (attributes). However, there are some other applications that involve rather high dimensional data with a small number of tuples. Examples of such applications include bioinformatics, survey-based statistical analysis, text processing, and so on. High dimensional data pose great challenges to most existing data mining algorithms. Although there are numerous algorithms dealing with transactional data sets, there are few algorithms oriented to very high dimensional data sets with a relatively small number of tuples.