{"title":"典型相关分析的学习轨迹模式","authors":"P. Huang, Jinliang Lu","doi":"10.4018/ijcini.20210401.oa1","DOIUrl":null,"url":null,"abstract":"A substantial body of research has been devoted to the analysis of motion trajectories. Usually, a motion trajectory consists of a set of coordinates, which is called a raw trajectory. In this paper, the authors first use vectors for some artificially constructed global features, such as the mean discrete curvature and standard deviation of acceleration, to represent the raw trajectory data, and then apply a multiset canonical correlation analysis method to extract latent features from the artificially constructed features. The performance of the latent features is then measured by evaluating the accuracy and F1 score of a gradient boosting decision tree model for different datasets, which include paired sample datasets and unpaired sample datasets. The experimental results show that the classifier performance for MCCA features is much better than that obtained for the artificially constructed features, such as that for the motion distance or mean velocity.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"59 1","pages":"1-17"},"PeriodicalIF":0.6000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Trajectory Patterns via Canonical Correlation Analysis\",\"authors\":\"P. Huang, Jinliang Lu\",\"doi\":\"10.4018/ijcini.20210401.oa1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A substantial body of research has been devoted to the analysis of motion trajectories. Usually, a motion trajectory consists of a set of coordinates, which is called a raw trajectory. In this paper, the authors first use vectors for some artificially constructed global features, such as the mean discrete curvature and standard deviation of acceleration, to represent the raw trajectory data, and then apply a multiset canonical correlation analysis method to extract latent features from the artificially constructed features. The performance of the latent features is then measured by evaluating the accuracy and F1 score of a gradient boosting decision tree model for different datasets, which include paired sample datasets and unpaired sample datasets. The experimental results show that the classifier performance for MCCA features is much better than that obtained for the artificially constructed features, such as that for the motion distance or mean velocity.\",\"PeriodicalId\":43637,\"journal\":{\"name\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"volume\":\"59 1\",\"pages\":\"1-17\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcini.20210401.oa1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.20210401.oa1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Learning Trajectory Patterns via Canonical Correlation Analysis
A substantial body of research has been devoted to the analysis of motion trajectories. Usually, a motion trajectory consists of a set of coordinates, which is called a raw trajectory. In this paper, the authors first use vectors for some artificially constructed global features, such as the mean discrete curvature and standard deviation of acceleration, to represent the raw trajectory data, and then apply a multiset canonical correlation analysis method to extract latent features from the artificially constructed features. The performance of the latent features is then measured by evaluating the accuracy and F1 score of a gradient boosting decision tree model for different datasets, which include paired sample datasets and unpaired sample datasets. The experimental results show that the classifier performance for MCCA features is much better than that obtained for the artificially constructed features, such as that for the motion distance or mean velocity.
期刊介绍:
The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.