典型相关分析的学习轨迹模式

Pub Date : 2021-04-01 DOI:10.4018/ijcini.20210401.oa1
P. Huang, Jinliang Lu
{"title":"典型相关分析的学习轨迹模式","authors":"P. Huang, Jinliang Lu","doi":"10.4018/ijcini.20210401.oa1","DOIUrl":null,"url":null,"abstract":"A substantial body of research has been devoted to the analysis of motion trajectories. Usually, a motion trajectory consists of a set of coordinates, which is called a raw trajectory. In this paper, the authors first use vectors for some artificially constructed global features, such as the mean discrete curvature and standard deviation of acceleration, to represent the raw trajectory data, and then apply a multiset canonical correlation analysis method to extract latent features from the artificially constructed features. The performance of the latent features is then measured by evaluating the accuracy and F1 score of a gradient boosting decision tree model for different datasets, which include paired sample datasets and unpaired sample datasets. The experimental results show that the classifier performance for MCCA features is much better than that obtained for the artificially constructed features, such as that for the motion distance or mean velocity.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Trajectory Patterns via Canonical Correlation Analysis\",\"authors\":\"P. Huang, Jinliang Lu\",\"doi\":\"10.4018/ijcini.20210401.oa1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A substantial body of research has been devoted to the analysis of motion trajectories. Usually, a motion trajectory consists of a set of coordinates, which is called a raw trajectory. In this paper, the authors first use vectors for some artificially constructed global features, such as the mean discrete curvature and standard deviation of acceleration, to represent the raw trajectory data, and then apply a multiset canonical correlation analysis method to extract latent features from the artificially constructed features. The performance of the latent features is then measured by evaluating the accuracy and F1 score of a gradient boosting decision tree model for different datasets, which include paired sample datasets and unpaired sample datasets. The experimental results show that the classifier performance for MCCA features is much better than that obtained for the artificially constructed features, such as that for the motion distance or mean velocity.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcini.20210401.oa1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.20210401.oa1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大量的研究致力于运动轨迹的分析。通常,运动轨迹由一组坐标组成,称为原始轨迹。在本文中,作者首先对一些人工构造的全局特征(如平均离散曲率和加速度标准差)使用向量表示原始轨迹数据,然后应用多集典型相关分析方法从人工构造的特征中提取潜在特征。然后通过评估梯度增强决策树模型对不同数据集(包括成对样本数据集和非成对样本数据集)的准确性和F1分数来衡量潜在特征的性能。实验结果表明,基于MCCA特征的分类器的分类性能明显优于基于运动距离或平均速度等人工构造特征的分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Learning Trajectory Patterns via Canonical Correlation Analysis
A substantial body of research has been devoted to the analysis of motion trajectories. Usually, a motion trajectory consists of a set of coordinates, which is called a raw trajectory. In this paper, the authors first use vectors for some artificially constructed global features, such as the mean discrete curvature and standard deviation of acceleration, to represent the raw trajectory data, and then apply a multiset canonical correlation analysis method to extract latent features from the artificially constructed features. The performance of the latent features is then measured by evaluating the accuracy and F1 score of a gradient boosting decision tree model for different datasets, which include paired sample datasets and unpaired sample datasets. The experimental results show that the classifier performance for MCCA features is much better than that obtained for the artificially constructed features, such as that for the motion distance or mean velocity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信