{"title":"信用和股票风险溢价的机器学习预测","authors":"Arben Kita","doi":"10.2139/ssrn.3800205","DOIUrl":null,"url":null,"abstract":"The emergence of algorithmic high-frequency trading in the market for credit risk affords accurate inference of new risk measures. When combined with machine learning predictive methods, these measures forecast substantial future changes in firms' credit and equity risk premiums in out-of-sample. Parallel measures estimated from firms' stocks fail to predict risk premiums, indicating that credit-market-based risk measures contain valuable information for forecasting firms' risk premia in both markets. The innovative high-volume high-frequency trading has not alleviated short-horizon pricing deviations across firms' equity and credit markets, an epitome of latent arbitrage in the market for credit risk.","PeriodicalId":11410,"journal":{"name":"Econometric Modeling: Capital Markets - Risk eJournal","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning Predictions of Credit and Equity Risk Premia\",\"authors\":\"Arben Kita\",\"doi\":\"10.2139/ssrn.3800205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of algorithmic high-frequency trading in the market for credit risk affords accurate inference of new risk measures. When combined with machine learning predictive methods, these measures forecast substantial future changes in firms' credit and equity risk premiums in out-of-sample. Parallel measures estimated from firms' stocks fail to predict risk premiums, indicating that credit-market-based risk measures contain valuable information for forecasting firms' risk premia in both markets. The innovative high-volume high-frequency trading has not alleviated short-horizon pricing deviations across firms' equity and credit markets, an epitome of latent arbitrage in the market for credit risk.\",\"PeriodicalId\":11410,\"journal\":{\"name\":\"Econometric Modeling: Capital Markets - Risk eJournal\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Capital Markets - Risk eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3800205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Risk eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3800205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning Predictions of Credit and Equity Risk Premia
The emergence of algorithmic high-frequency trading in the market for credit risk affords accurate inference of new risk measures. When combined with machine learning predictive methods, these measures forecast substantial future changes in firms' credit and equity risk premiums in out-of-sample. Parallel measures estimated from firms' stocks fail to predict risk premiums, indicating that credit-market-based risk measures contain valuable information for forecasting firms' risk premia in both markets. The innovative high-volume high-frequency trading has not alleviated short-horizon pricing deviations across firms' equity and credit markets, an epitome of latent arbitrage in the market for credit risk.